Testing Smoker Detection Using Google Cloud Services and Infrastructure

Authors

DOI:

https://doi.org/10.33019/jurnalecotipe.v11i2.4499

Keywords:

Cloud Computing, Deep Learning, Google Cloud Vision API, Image Processing, Smoker Detection

Abstract

Smoking remains a significant public health challenge globally, contributing to a wide range of detrimental health outcomes including cardiovascular diseases, cancer, and respiratory disorders. Despite concerted efforts to curb smoking rates through policy interventions, effective monitoring and enforcement remain complex and resource-intensive tasks for health authorities and organizations. Innovative approaches leveraging advanced technologies such as visual detection systems powered by deep learning offer promising solutions to enhance smoking behavior detection and monitoring. Integrating the Google Cloud Vision API enables real-time identification of smoking indicators and discrimination from complex visual backgrounds. This capability not only supports proactive health monitoring but also strengthens the enforcement of public health policies aimed at reducing smoking prevalence. The research methodology utilizes a dataset of 600 images sourced from the Kaggle platform, encompassing diverse scenarios to optimize model training. Techniques such as image segmentation, feature extraction, and machine learning-based classification are employed to achieve high levels of precision and recall in identifying smokers and cigarette smoke. Despite the advantages of scalability, robust infrastructure, and high availability facilitated by cloud computing, the study acknowledges challenges such as bandwidth constraints and security risks associated with handling sensitive health data. Nevertheless, technological innovations in visual detection systems and cloud services are underscored as pivotal in mitigating the health impacts of smoking and advancing public health initiatives.

Downloads

Download data is not yet available.

References

Fariz Kahendra, Bagoes Widjanarko, dan Farid Agushybana, “Faktor-Faktor yang Mempengaruhi Implementasi Kebijakan Kawasan Tanpa Rokok : Literature Review,†Media Publ. Promosi Kesehat. Indones., vol. 6, no. 3, hal. 430–435, 2023, doi: 10.56338/mppki.v6i3.3284.

M. I. Gojali dan E. L. Tjiong, “Pengembangan Aplikasi Deteksi Objek Rokok Dan Kegiatan Merokok Menggunakan Algoritma YOLOv3,†KALBISCIENTIA J. Sains dan Teknol., vol. 10, no. 02, hal. 201–208, 2023, doi: 10.53008/kalbiscientia.v10i02.3108.

P. Baker dan L. Collins, “Creating and analysing a multimodal corpus of news texts with Google Cloud Vision’s automatic image tagger,†Appl. Corpus Linguist., vol. 3, no. 1, hal. 100043, 2023, doi: 10.1016/j.acorp.2023.100043.

J. Valentino dan Y. A. Susetyo, “Analisis Perbandingan Optical Character Recognition Google Vision dengan Microsoft Computer Vision pada Pembacaan KTP-el,†J. JTIK (Jurnal Teknol. Inf. dan Komunikasi), vol. 7, no. 4, hal. 552–561, 2023, doi: 10.35870/jtik.v7i4.1046.

D. Zha, Z. P. Bhat, K. H. Lai, F. Yang, dan X. Hu, “Data-centric AI: Perspectives and Challenges,†2023 SIAM Int. Conf. Data Mining, SDM 2023, hal. 945–948, 2023, doi: 10.1137/1.9781611977653.ch106.

A. Ravikumar dan H. Sriraman, “Acceleration of image processing and computer vision algorithms,†Handb. Res. Comput. Vis. Image Process. Deep Learn. Era, hal. 1–18, 2022, doi: 10.4018/978-1-7998-8892-5.ch001.

A. Amrullah, A. Nugroho, dan Z. Ramadhan, “Perbandingan Kinerja Web Server Pada Penyedia Layanan Cloud Microsoft Azure Dan Amazon Web Services,†J. Inform. Teknol. dan Sains, vol. 5, no. 1, hal. 92–97, 2023, doi: 10.51401/jinteks.v5i1.2487.

M. I. P. Nasution, “TEKNIK PELESTARIAN PRIVASI DATA DI DATABASE CLOUD Raisida Salwa, Muhammad Irwan Padli Nasution Fakultas Ekonomi Dan Bisnis Islam Universitas Islam Negeri Sumatera Utara,†vol. 3, no. 7, 2024.

Ferryanto dan N. Chandra, “Analisis Ancaman Keamanan Data Dalam Cloud Computing,†JCOME (Journal Comput. Multimed. Enginering), vol. 1, hal. 1–5, 2023.

B. R. Allo, N. Mardiana, O. Soleh, dan V. Lazinu, “Peran Teknologi Cloud Computing Dalam Transformasi Infrastruktur Ti Perusahaan: Studi Analisis Implementasi Di Industri Manufaktur,†J. Cahaya Mandalika, vol. 18, hal. 1408–1414, 2018.

F. R. Tarigan, R. Andrian, dan R. Safe’i, “Klasifikasi Skala Kerapatan dan Transparansi Tajuk Jenis Daun Jarum dengan VGG16,†MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 3, no. 2, hal. 253–263, 2023, doi: 10.57152/malcom.v3i2.940.

F. Lestari, E. D. Putra, A. Sonita, dan Y. Darnita, “Human Object Counter Tracking Using Connected Component Labelling On Digital Image Processing,†J. Komputer, Inf. dan Teknol., vol. 3, no. 2, hal. 251–258, 2023, doi: 10.53697/jkomitek.v3i2.1218.

R. F. Putra dan D. I. Mulyana, “Optimasi Deteksi Objek Dengan Segmentasi dan Data Augmentasi Pada Hewan Siput Beracun Menggunakan Algoritma You Only Look Once (YOLO),†J. JTIK (Jurnal Teknol. Inf. dan Komunikasi), vol. 8, no. 1, hal. 93–103, 2024, doi: 10.35870/jtik.v8i1.1391.

J. Alfred Daniel, C. Chandru Vignesh, B. A. Muthu, R. Senthil Kumar, C. B. Sivaparthipan, dan C. E. M. Marin, “Fully convolutional neural networks for LIDAR–camera fusion for pedestrian detection in autonomous vehicle,†Multimed. Tools Appl., vol. 82, no. 16, hal. 25107–25130, 2023, doi: 10.1007/s11042-023-14417-x.

D. He dan S. Xiong, “Image Processing Design and Algorithm Research Based on Cloud Computing,†J. Sensors, vol. 2021, 2021, doi: 10.1155/2021/9198884.

Downloads

Published

08/01/2024

How to Cite

[1]
M. Mustajib, S. Gunawan, A. L. A. Suyoso, H. Margono, and M. R. Solakhudin, “Testing Smoker Detection Using Google Cloud Services and Infrastructure”, JurnalEcotipe, vol. 11, no. 2, pp. 134–142, Aug. 2024, doi: 10.33019/jurnalecotipe.v11i2.4499.

Most read articles by the same author(s)