Implementation of Natural Language Processing in the Reporting and Handling System of Sexual Violence Cases on Campus

  • Ilwan Syafrinal Universal University, Batam
  • Sapta Eka Putra Tamansiswa University, Padang
  • Mahazam Afrad Institut Teknologi Telkom Purwokerto

Abstract

Sexual violence in the campus environment is a serious problem that requires an effective reporting and handling system. This research aims to develop a Natural Language Processing (NLP)-based system that can improve the process of reporting and handling cases of sexual violence on campus. The methodology used includes the application of NLP techniques such as sentiment analysis and entity recognition to automate the identification and handling of reports. The Support Vector Machines (SVM) algorithm is used for the classification of text in this system. The data is collected from various sources, pre-processed, and used to train NLP models. The results of the study show that the system developed has an accuracy level of 91%, precision of 93%, and recall of 87%, which illustrates its effectiveness in collecting reports of sexual violence anonymously and accurately. Feedback from early adopters shows that the system improves the efficiency and accuracy of the reporting process. The conclusion of this study is that the implementation of NLP can significantly improve the reporting and handling system of sexual violence on campus. Further research is suggested to expand the scope of the system and improve its analysis capabilities.

Keywords: Case Handling, Natural Language Processing, Reporting Systems, Sexual Violence, Support Vector Machines

Downloads

Download data is not yet available.

References

Raineka Faturani, “Kekerasan Seksual di Lingkungan Perguruan Tinggi,” Sep 2022, doi: 10.5281/ZENODO.7052155.

S. Sopyandi dan S. Sujarwo, “Kekerasan Seksual di Lingkungan Pendidikan dan Pencegahannya,” J. Pendidik. Ilmu Pengetah. Sos., vol. 15, no. 1, hlm. 19–25, Mei 2023, doi: 10.37304/jpips.v15i1.9448.

A. Y. Susilowati, “Kampus Ramah Mahasiswa dari Kekerasan Seksual: Analisis Tingkat Pengetahuan Mahasiswa Terkait Pencegahan dan Penanganan Kekerasan Seksual,” Empower J. Pengemb. Masy. Islam, vol. 7, no. 2, hlm. 233, Des 2022, doi: 10.24235/empower.v7i2.11516.

D. S. Yunina dkk., “Sosialisasi 3 Dosa Besar Dalam Pendidikan Untuk Menanamkan Nilai Karakter Peserta Didik di SDN Banjar Kemuning,” vol. 05, no. 02, 2023.

Franciscus Xaverius Wartoyo dan Yuni Priskila Ginting, “Kekerasan Seksual Pada Lingkungan Perguruan Tinggi Ditinjau Dari Nilai Pancasila,” J. Lemhannas RI, vol. 11, no. 1, hlm. 29–46, Mei 2023, doi: 10.55960/jlri.v11i1.423.

F. Bentivegna dan P. Patalay, “The impact of sexual violence in mid-adolescence on mental health: a UK population-based longitudinal study,” Lancet Psychiatry, vol. 9, no. 11, hlm. 874–883, Nov 2022, doi: 10.1016/S2215-0366(22)00271-1.

L. M. Orchowski, L. Grocott, K. W. Bogen, A. Ilegbusi, A. B. Amstadter, dan N. R. Nugent, “Barriers to Reporting Sexual Violence: A Qualitative Analysis of #WhyIDidntReport,” Violence Women, vol. 28, no. 14, hlm. 3530–3553, Nov 2022, doi: 10.1177/10778012221092479.

K. Parti dan R. A. Robinson, “What Hinders Victims from Reporting Sexual Violence: A Qualitative Study with Police Officers, Prosecutors, and Judges in Hungary,” Int. J. Crime Justice Soc. Democr., vol. 10, no. 2, Jun 2021, doi: 10.5204/ijcjsd.1851.

C. Peersman, M. Edwards, E. Williams, dan A. Rashid, “A Survey of Relevant Text Mining Technology,” 2022, arXiv. doi: 10.48550/ARXIV.2211.15784.

F. Balahadia, Z. J. Astoveza, G. Jamolin, dan N. E. A. Astoveza, “Development and Implementation of Violence against Women and their Children Report System Mobile Application,” Int. J. Sci. Technol. Eng. Math., vol. 2, no. 3, hlm. 17–42, Sep 2022, doi: 10.53378/352906.

Q. Zeng dkk., “Improved Naive Bayes with Mislabeled Data,” 2023, arXiv. doi: 10.48550/ARXIV.2304.06292.

S. Etzler, F. D. Schönbrodt, F. Pargent, R. Eher, dan M. Rettenberger, “Machine Learning and Risk Assessment: Random Forest Does Not Outperform Logistic Regression in the Prediction of Sexual Recidivism,” Assessment, vol. 31, no. 2, hlm. 460–481, Mar 2024, doi: 10.1177/10731911231164624.

K. L. Tan, C. P. Lee, K. M. Lim, dan K. S. M. Anbananthen, “Sentiment Analysis With Ensemble Hybrid Deep Learning Model,” IEEE Access, vol. 10, hlm. 103694–103704, 2022, doi: 10.1109/ACCESS.2022.3210182.

D. Mustafa Abdullah dan A. Mohsin Abdulazeez, “Machine Learning Applications based on SVM Classification A Review,” Qubahan Acad. J., vol. 1, no. 2, hlm. 81–90, Apr 2021, doi: 10.48161/qaj.v1n2a50.

A. O. Kuyoro, S. Alimi, dan O. Awodele, “Comparative Analysis of the Performance of Various Support Vector Machine kernels,” dalam 2022 5th Information Technology for Education and Development (ITED), Abuja, Nigeria: IEEE, Nov 2022, hlm. 1–7. doi: 10.1109/ITED56637.2022.10051564.

B. A. Kindhi, N. Susanto, W. Handayani, S. V. Kurniasari, dan A. P. Pratama, “Prediction of the Tuberculosis Patients Who Can Recover Normally Using a Support Vector Machine with Radial and Polynomial Kernels,” dalam 2021 3rd East Indonesia Conference on Computer and Information Technology (EIConCIT), Surabaya, Indonesia: IEEE, Apr 2021, hlm. 365–368. doi: 10.1109/EIConCIT50028.2021.9431878.

S. Saha, M. Das, B. S. Mondal, S. Sarkar, dan J. Maiti, “D i PSVM: A Polynomial Kernel-free Support Vector Machine,” dalam 2021 International Conference on Data Analytics for Business and Industry (ICDABI), Sakheer, Bahrain: IEEE, Okt 2021, hlm. 448–452. doi: 10.1109/ICDABI53623.2021.9655976.

R. Chahar, A. K. Dubey, dan S. K. Narang, “A Mental Health Performance Assessment using Support Vector Machine,” dalam 2023 3rd International Conference on Intelligent Technologies (CONIT), Hubli, India: IEEE, Jun 2023, hlm. 1–7. doi: 10.1109/CONIT59222.2023.10205772.

S. Jueyendah, M. Lezgy-Nazargah, H. Eskandari-Naddaf, dan S. A. Emamian, “Predicting the mechanical properties of cement mortar using the support vector machine approach,” Constr. Build. Mater., vol. 291, hlm. 123396, Jul 2021, doi: 10.1016/j.conbuildmat.2021.123396.

L. Fischer dan P. Wollstadt, “Precision and Recall Reject Curves for Classification,” 2023, arXiv. doi: 10.48550/ARXIV.2308.08381.

R. Yusof, N. Hashim, N. Abdul Rahman, S. Y. Mohd Yunus, dan N. A. Aziz Fadzillah, “Academic Performance Prediction Model Using Classification Algorithms: Exploring the Potential Factors,” Int. J. Acad. Res. Progress. Educ. Dev., vol. 11, no. 3, hlm. Pages 706-724, Agu 2022, doi: 10.6007/IJARPED/v11-i3/14753.

Z. Tian, Y. Li, Z. Li, dan S. Li, “Recall Network: A Simple Brain-Inspired Algorithm for Classification,” Comput. Intell. Neurosci., vol. 2022, hlm. 1–52, Agu 2022, doi: 10.1155/2022/9374946.

A. Humphrey dkk., “Machine-learning classification of astronomical sources: estimating F1-score in the absence of ground truth,” Mon. Not. R. Astron. Soc. Lett., vol. 517, no. 1, hlm. L116–L120, Okt 2022, doi: 10.1093/mnrasl/slac120.

Published
2024-10-31
How to Cite
[1]
I. Syafrinal, S. Putra, and M. Afrad, “Implementation of Natural Language Processing in the Reporting and Handling System of Sexual Violence Cases on Campus”, JurnalEcotipe, vol. 11, no. 2, pp. 193-204, Oct. 2024.
Abstract viewed = 148 times
PDF downloaded = 73 times