Feasibility Analysis of the Implementation of a Photovoltaic Water Cooling System

  • Riyani Prima Dewi Politeknik Negeri Cilacap
  • Saepul Rahmat

Abstract

This research examines the impact of implementing a cooling system on PV panels, utilizing a water flow controller, with the aim of enhancing efficiency and augmenting power generation. The cooling system was affixed to pre-existing 200W monocrystalline photovoltaic panels. The controller effectively regulates the temperature of the photovoltaic (PV) panel at a constant value of 30C by employing a water-cooling system. This system utilizes PVC-tube that are strategically positioned on the surface of the panel. The cooling control system is programmed to operate according to a predetermined schedule. The experimentation involved the implementation of a cooling system during PV testing, with the inclusion of non-cooled PV panels for the purpose of comparison. The analysis examines the impact of temperature on the output power of a photovoltaic system, taking into account losses from the cooling system. In conclusion, an assessment was conducted on the comprehensive utilization of a water-cooling system for PV panels. The experimental findings indicate that the PV output power exhibited a 7.8% increase when the cooling system was employed as compared to the PV system without cooling. Incorporating the computation of system losses results in a net increase of 5.9% in the output power of the photovoltaic system.

Keywords: Efficiency; Net Output Power; Photovoltaic; Temperature; Water Cooling System

Downloads

Download data is not yet available.

References

[1] R. J. Mustafa, M. R. Gomaa, M. Al-Dhaifallah, and H. Rezk, “Environmental Impacts on the Performance of Solar Photovoltaic Systems,” Sustainability, vol. 12, no. 2, p. 608, Jan. 2020, doi: 10.3390/su12020608.
[2] A. El Hammoumi, S. Chtita, S. Motahhir, and A. El Ghzizal, “Solar PV energy: From material to use, and the most commonly used techniques to maximize the power output of PV systems: A focus on solar trackers and floating solar panels,” Energy Reports, vol. 8, pp. 11992–12010, Nov. 2022, doi: 10.1016/j.egyr.2022.09.054.
[3] S. Nižeti?, E. Giama, and A. M. Papadopoulos, “Comprehensive analysis and general economic-environmental evaluation of cooling techniques for photovoltaic panels, Part II: Active cooling techniques,” Energy Convers Manag, vol. 155, pp. 301–323, Jan. 2018, doi: 10.1016/j.enconman.2017.10.071.
[4] M. S. Ahmed, R. Karal, B. K. Das, and A. Das, “Experimental investigation of cooling, wind velocity, and dust deposition effects on solar PV performance in a tropical climate in Bangladesh,” Case Studies in Thermal Engineering, vol. 50, p. 103409, Oct. 2023, doi: 10.1016/j.csite.2023.103409.
[5] A. Risdiyanto, Ant. A. Kristi, B. Susanto, N. A. Rachman, A. Junaedi, and E. W. Mukti, “Implementation of Photovoltaic Water Spray Cooling System and Its Feasibility Analysis,” in 2020 International Conference on Sustainable Energy Engineering and Application (ICSEEA), IEEE, Nov. 2020, pp. 88–93. doi: 10.1109/ICSEEA50711.2020.9306133.
[6] M. R. Gomaa, R. J. Mustafa, and H. Rezk, “An experimental implementation and testing of a concentrated hybrid photovoltaic/thermal system with monocrystalline solar cells using linear Fresnel reflected mirrors,” Int J Energy Res, p. er.4862, Sep. 2019, doi: 10.1002/er.4862.
[7] M. R. Gomaa, W. Hammad, M. Al-Dhaifallah, and H. Rezk, “Performance enhancement of grid-tied PV system through proposed design cooling techniques: An experimental study and comparative analysis,” Solar Energy, vol. 211, pp. 1110–1127, Nov. 2020, doi: 10.1016/j.solener.2020.10.062.
[8] R. P. , R. S. , & M. A. A. Dewi, “Implementasi Sistem Pendingin Panel Surya Untuk Mempertahankan Suhu Permukaan Panel,” in Prosiding Seminar Nasional Wijayakusuma National Conference, Cilacap, Dec. 2022, pp. 75–82.
[9] R. P. Dewi, U. Karyani, and R. Darpono, “APLIKASI NODEMCU ESP8266 DAN SENSOR SUHU UNTUK MONITORING SUHU PERMUKAAN PANEL SURYA MELALUI SMARTPHONE,” Jurnal Ilmiah Flash, vol. 8, no. 2, p. 53, Jan. 2023, doi: 10.32511/flash.v8i2.954.
[10] R. Prima Dewi, “SISTEM PENDINGIN PANEL SURYA OTOMATIS UNTUK MENGKATKAN DAYA KELUARAN PANEL SURYA,” Simetris: Jurnal Teknik Mesin, Elektro dan Ilmu Komputer, vol. 14, no. 1, pp. 1–10, May 2023, doi: 10.24176/simet.v14i1.8901.
[11] A. Bria, B. Raillani, D. Chaatouf, M. Salhi, S. Amraqui, and A. Mezrhab, “Evaluation of the efficiency of a cooling system using PCM materials for glazed and unglazed PV panels,” in 2023 3rd International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET), IEEE, May 2023, pp. 1–7. doi: 10.1109/IRASET57153.2023.10152935.
[12] A. Hussien, A. Eltayesh, and H. M. El-Batsh, “Experimental and numerical investigation for PV cooling by forced convection,” Alexandria Engineering Journal, vol. 64, pp. 427–440, Feb. 2023, doi: 10.1016/j.aej.2022.09.006.
[13] M. K. , N. M. , & O. A. N. YE??LYURT, “Techniques for enhancing and maintaining electrical efficiency of photovoltaic systems,” International Journal of New Technology and Research, vol. 4, no. 4, Apr. 2018.
[14] M. Y. Abdalhamed, A. Almalih, M. Alshaikh, M. A. Hadi, and Y. Aldali, “Modeling and experimental investigation on the performance of a PV panel with water cooling system,” in 2023 IEEE 3rd International Maghreb Meeting of the Conference on Sciences and Techniques of Automatic Control and Computer Engineering (MI-STA), IEEE, May 2023, pp. 836–841. doi: 10.1109/MI-STA57575.2023.10169292.
[15] S. A. Zubeer and O. M. Ali, “Experimental and numerical study of low concentration and water-cooling effect on PV module performance,” Case Studies in Thermal Engineering, vol. 34, p. 102007, Jun. 2022, doi: 10.1016/j.csite.2022.102007.
[16] M. A. Yildirim, A. Cebula, and M. Su?owicz, “A cooling design for photovoltaic panels – Water-based PV/T system,” Energy, vol. 256, p. 124654, Oct. 2022, doi: 10.1016/j.energy.2022.124654.
[17] P. B, V. Ravindran, M. Marimuthu, S. Ragunathan, S. K, and R. V, “Design and Implementation of PV Powered Air Cooler System Using Thermoelectric Cooler,” in 2021 Innovations in Power and Advanced Computing Technologies (i-PACT), IEEE, Nov. 2021, pp. 1–6. doi: 10.1109/i-PACT52855.2021.9697007.
[18] V. V. Kulkarni and V. A. Kulkarni, “Performance Optimization of Photovoltaic Systems using Thermoelectric Cooling System,” in 2022 International Conference on Futuristic Technologies (INCOFT), IEEE, Nov. 2022, pp. 1–4. doi: 10.1109/INCOFT55651.2022.10094413.
[19] S. N. Razali et al., “Performance enhancement of photovoltaic modules with passive cooling multidirectional tapered fin heat sinks (MTFHS),” Case Studies in Thermal Engineering, vol. 50, p. 103400, Oct. 2023, doi: 10.1016/j.csite.2023.103400.
[20] A. K. Azad and S. Parvin, “Photovoltaic thermal (PV/T) performance analysis for different flow regimes: A comparative numerical study,” International Journal of Thermofluids, vol. 18, p. 100319, May 2023, doi: 10.1016/j.ijft.2023.100319.
[21] S. D. Prasetyo, A. R. Prabowo, and Z. Arifin, “The use of a hybrid photovoltaic/thermal (PV/T) collector system as a sustainable energy-harvest instrument in urban technology,” Heliyon, vol. 9, no. 2, p. e13390, Feb. 2023, doi: 10.1016/j.heliyon.2023.e13390.
[22] G. Fabbri and M. Greppi, “Numerical modeling of a new integrated PV-TE cooling system and support,” Results in Engineering, vol. 11, p. 100240, Sep. 2021, doi: 10.1016/j.rineng.2021.100240.
[23] M.-W. Tian et al., “Energy, exergy and economics study of a solar/thermal panel cooled by nanofluid,” Case Studies in Thermal Engineering, vol. 28, p. 101481, Dec. 2021, doi: 10.1016/j.csite.2021.101481.
[24] A. Aydin, I. Kayri, and H. Aydin, “The Efects of TiO 2 Nanofluid on Efficiency and Heat Transfer Indicators of an Inner-Plate Finned Collective Cooling in a PV/T Hybrid System,” in 2022 Global Energy Conference (GEC), IEEE, Oct. 2022, pp. 368–373. doi: 10.1109/GEC55014.2022.9986908.
[25] Aldi Cahya Muhamad et al., KONVERSI ENERGI, 1st ed. Padang: PT Global Eksekutif Teknologi, 2023.
[26] “Solar and Wind Energy,” in Energy Production Systems Engineering, Wiley, 2016, pp. 663–679. doi: 10.1002/9781119238041.ch28.
Published
2024-04-29
How to Cite
[1]
R. P. Dewi and S. Rahmat, “Feasibility Analysis of the Implementation of a Photovoltaic Water Cooling System”, JurnalEcotipe, vol. 11, no. 1, pp. 21-30, Apr. 2024.
Abstract viewed = 50 times
PDF downloaded = 0 times