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comparing them on several related aspects. The results of the study showed
that the solution obtained using the Al method requires a longer execution
time, more than 2 seconds for PSO and more than 3 seconds for GA, while
ZN requires less than 1 second. However, the Al method can provide better
solutions, as can be seen from the magnitude of the ITAE that occurs, where
GA and PSO provide ITAE less than 1 while ZN is more than 22.
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1. INTRODUCTION

PID is one of the most widely applied methods in automation and control systems. This method
can be applied to control parameters in a system, such as temperature, speed, position, pressure, and
others. The PID controller minimizes the error between the setpoint value (the desired value) and the
output value produced by the system. In PID, three actions are associated with the controller:
proportional, integral, and derivative.

Proportional Component (P): This component is used to reduce errors by responding proportionally
to the magnitude of the detected error. The larger the error, the greater the proportional response and
reaction. Integral Component (I): This component is used to address errors that accumulate over time.
This component is important for systems that experience small, continuous errors that cannot be
addressed with the proportional component alone. Derivative Component (D): This component predicts
future error trends based on the rate of error change. This component provides control to dampen rapid
changes and avoid overshoot.
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This method is quite simple, but determining the PID parameters, namely Kp, Ki, and Kd, which
are specific to the conditions of the system in question, is quite a challenge. Mistakes in determining the
Kp, Ki, and Kd parameters in a system may cause the system to become unstable or respond less than
expected. For example, excessive overshoot or unacceptable stabilization time may occur[1]. Generally,
PID parameter adjustment can be done through trial and error, which is, of course, time-consuming and
results in less than optimal settings. Therefore, various more systematic methods such as grid search,
genetic algorithms, or model-based optimization are used to help determine more precise parameters[2].

Classic methods such as Ziegler—Nichols (ZN) have long been used for PID tuning, but often result
in high overshoot, long settling times, and steady-state errors that do not meet the needs of modern
systems. To overcome these limitations, various artificial intelligence-based optimization methods, such
as Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) have begun to be used because they
are able to produce PID parameters that are closer to design specifications, namely fast, stable, and
precise responses.

The existence of computers and software and their development today are very important in this
regard. Python, with its advantages, is also a choice in this regard. Python is a programming language
that, in the last decade, has become a very popular computer programming language among engineers
and researchers because of its ease of use and the variety of libraries available for numerical data
processing, control analysis, and simulation. The main advantage of using Python in computer
programming is its ability to integrate various libraries to handle complex technical aspects in a simple
and intuitive way [3].

Python libraries were used in PID control implementation, including NumPy, SciPy, and Control.
Numpy and scipy provide tools for performing fast numerical calculations, such as matrix operations,
differentiation, and integration, which are crucial in managing dynamic systems [4]. The use of the
matplotlib and plotly libraries enables the graphical visualization of simulation and experimental results,
providing better insight into assessing system performance. The ability to visualize the system's response
to changes in PID parameters or to external disturbances helps understand the behavior of more complex
systems [5]. Python with the python-control library, as open-source software, offers a more affordable
and flexible solution for teaching and research in the field of engineering control, covering the
implementation of PID control in Python, including its use for simulation and analysis of control
systems[6 - 8].

Implementation of PID control requires careful testing and parameter tuning, often performed
directly on a physical system. However, simulation using computers and software allows users to
achieve time and cost savings before physically implementing the control. Python allows users to do
this. The use of Python allows faster experimentation with various parameter combinations to find
optimal settings for P, I, and D parameters, which is not easily achieved with conventional methods
[6,9].

Various advantages offered by Python are making more and more engineers, researchers, and
developers turn to Python as a primary tool in managing PID control. Many articles have been written
on the use of Python in the field of control, especially PID [10-11]. This shows Python's reliable
performance in control system analysis.

This article uses Python to simulate and analyze PID control parameter settings using conventional
methods and advanced methods utilizing Al algorithms. Using an Al algorithm to determine PID
controller parameters, there are several popular and effective algorithms. Each algorithm has its
advantages and disadvantages, and the selection of the best algorithm depends on the specific application
context, such as system complexity, computational time, and required accuracy.

Several Al algorithms have been used for PID parameter optimization, including:

1. Genetic Algorithm (GA). This algorithm has advantages, suitable for optimization problems with
many parameters and without explicit functions, can work well on large and non-linear parameter
spaces, and does not require gradients or deep function information. The disadvantage is that this
algorithm requires more iterations and a longer time for convergence compared to other algorithms,
as a result, it can be expensive in computation if the population size or number of generations is
too large[12].
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2. Particle Swarm Optimization (PSO). The PSO algorithm has several advantages, including being
faster than GA for many optimization problems, being able to avoid overfitting well in large
parameter spaces, and achieving faster convergence compared to GA. However, its drawback is
that it is not as effective as GA for optimization with many local minimum points [13].

3. Simulated Annealing (SA). This algorithm has the advantage of being easy to implement and does
not require a lot of computation. It can avoid getting stuck in local solutions and potentially find a
global solution. However, its drawback is that the search process can be very slow, especially in
large search spaces, and it is not always as effective as GA or PSO in terms of speed and accuracy
on some problems [12].

4. Reinforcement Learning (RL) has the advantage of being able to continuously adjust based on
environmental feedback, learning in real time, and adapting to changes in the system. One of the
disadvantage is that this algorithm requires a lot of data for training and iteration.

GA and PSO are often used in PID parameter optimization because of their ability to explore a
wide parameter space without requiring special assumptions about the form of the cost function[12].

2. RESEARCH METHOD

2.1. Research Approach

This research uses a quantitative, experimental approach based on computer simulation. The
objective is to assess the performance of a PID control system with parameters determined by an
artificial intelligence (Al) algorithm, compared to conventionally determined PID parameters.

2.2. Research Design
The research design is carried out in several stages, as follows:

1. System Modeling. At this stage, a mathematical model of the controlled system is developed, such
as a first- or second-order linear system (e.g., a heating system, a motor positioning system, etc.).
The system model is then simulated using the Python programming language.

2. PID Control Design. The next stage is implementing PID control with initial parameters (the
Ziegler-Nichols method can be used as a baseline), followed by developing the PID control function
to be used in the simulation.

3. Al Development and Integration. The next stage is developing an Al algorithm to optimize the PID
parameters (Kp, Ki, Kd). The algorithms used in this research are the Genetic Algorithm (GA) and
Particle Swarm Optimization (PSO). The objective function in the optimization process is to
minimize system errors, such as:

a. Integral of Time-weighted Absolute Error (ITAE)
b. Overshoot, settling time, rise time

4. Simulation and Data Collection: This stage runs simulations on two scenarios: a conventional PID
with Ziegler-Nichols theory (baseline) and a PID with Al-optimized parameters, and then data is
recorded on the system's response to disturbances or setpoint changes.

5.  System Performance Evaluation: The next stage is to analyze system performance based on
response graphs and performance metrics, namely rise time, settling time, overshoot, and steady-
state error. The error value in this study uses the ITAE criterion.

The flowchart of the research is illustrated in Figure 1 and Table 1 shows parameters used in
simulations Figure 1 shows this research begins with system modeling in the form of a transfer function.
Next, a PID control design is carried out using the conventional Ziegler—Nichols method and its
performance is evaluated through simulation. To improve system performance, PID parameters are then
optimized with Al-based algorithms, Genetic Algorithm (GA) and Particle Swarm Optimization (PSO).
The optimization results are simulated again to obtain system performance data which are then compared
with the results of conventional methods. Based on the results of the comparative evaluation, an analysis
is carried out and conclusions are drawn regarding the effectiveness of the optimization method
compared to the classical approach.

2.3. Tools and Equipment
1. Programming Language: Python
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2. The Python libraries used in this research are numpy, scipy, and matplotlib for numerical simulation
and visualization, the control library for dynamic system models, and the Python library for Al

2.4. Data Collection Techniques
Data is obtained from simulation results in the form of system response graphs and performance
metric values for each scenario. The simulation is run several times to validate the results.

2.5. Data Analysis Techniques
Analysis is conducted quantitatively by comparing simulation results between conventional PID
and PID-AI, presented in the form of comparison tables and system performance graphs.

System Model
(sample Transfer Function)

Conventional PID Design
(Ziegler-Nichols)

Conventional PID Simulation
And Record System Performance

v

Al Optimizer Algoritms GA
and PSO

v

PID Parameters Optimation
use AT Algoritms

v

PID-AI Simulation and
Performance Eavluation

v

Prformance Comparation
Conventional PID vs Al

v

Analisys and Conclusion

v

End

Figure 1. Flowchart of Research Method
Pseudocode used for PID + Al Simulation,

# Step 1: System Model

def system_model(K, T, time):
# return response of a transfer function (e.g., first order system)
return control.TransferFunction([K], [T, 1])

# Step 2: PID Evaluation

def pid_simulation(Kp, Ki, Kd, system, t):
# calculate system respons use PID control
# use control.feedback and control.forced_response
return output, error_metrics

# Step 3: Objectif Function for AI
def objective_function(params):
Kp, Ki, Kd = params
output, error = pid_simulation(Kp, Ki, Kd, system_model(...), t)
# return ITAE
return compute_ITAE(error, t)

# Step 4: Optimatiton with AI (PSO or GA)
best_params = run_ai_optimizer(objective_function)

# Step 5: Repeat Simulation with best Parameter
output_ai, error_al = pid_simulation(*best_params, system_model(...), t)

# Step 6: Compare with Conventional PID method
output_std, error_std = pid_simulation(Kp_manual, Ki_manual, Kd_manual, system_model(...), t)
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# Step 7: Visualisation and Analisys
plot_comparison(output_std, output_ati)
report_performance_metrics(error_std, error_ati)

Table 1. Parameters Simulations

Algorithm Parameters Values (Default in code)
GA (Genetic Algorithm) Population Size (pop_size) 20
Maximum Generations (gen_max) 30
Mutation Rate (mutation_rate) 0.1

PID Parameter Bounds (bounds)

Kp € [0.5], Ki € [0.5], Kd € [0.2]

PSO (Particle Swarm Optimization) | Number of Particles (num_particles)

15

Maximum Iterations (max_iter) 30
Inertia Weight (w) 0.5
Learning Coefficient (c1, c2) 1.5, 1.5

PID Parameter Bounds (bounds)

Kp€[0.5],Ki€[0.5],Kde[0.2]

ZN (Ziegler—Nichols) Calculation based on gain margin (Ku) and ultimate

Calculation base on formula

period (Pu)
Aspect Simulation Time (T_FINAL) 20s
Number of Time Points (T_STEPS) 500
Time Range (T) 0-20s
Plant G(s)=1/(s*+6s+5)
Input Step input = 1

Evaluation Criteria

ITAE

Performance Analysis

Overshoot, Rise Time, Settling Time, Steady-

State Error

3. RESULTS AND DISCUSSION

For observation and comparison in this study, a Python program was built using three selected
methods, namely the Ziegler-Nichols method, representing the conventional method, and the GA and
PSO methods, representing the Al method. The three methods produce a graph and several important
data points related to the methods above. The developed Python code allows users to change the system's
transfer function value, and generate PID parameter values, namely overshot, ITAE error, rise time,
settling time, and the required execution time. Below is Python code for the simulation.

# compare_pid_methods.py

import numpy as np

import matplotlib.pyplot as plt

from control import tf, feedback, step_response, margin
import random, csv, time

T_FINAL = 20 # simulation duration for step response
T_STEPS = 500 # number of time
T = np.linspace(0, T_FINAL, T_STEPS)

# === Plant ===
def get_plant():
num = [1]

den = [1, 6, 5]
return tf(num, den)

# === Objecctive Function: ITAE ===
def pid_itae(params, plant):
Kp, Ki, Kd = params
if Kp < @ or KL < @ or Kd < 0:
print(f"Invalid PID: {params}")
return le6é
try:
C = tf([Kd, Kp, Ki], [1, 0])
closed_loop = feedback(C * plant, 1)
t, y = step_response(closed_loop, T)
if np.any(np.isnan(y)) or np.any(np.isinf(y)):
print(f"Invalid response: {params}")

return le6
e=1-y
itae = simpson(t * np.abs(e), t)

H H

itae = simps(t * np.abs(e), t)
itae = np.trapz(t * np.abs(e), t)
return itae
except Exception as e:
print(f"Error for PID {params}: {e}")
return le6

=== Syatem Respon Analisys ===
def analyze_response(pid, plant):
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Kp, Ki, Kd = pid

C = tf([Kd, Kp, Ki], [1, 0])

TF = feedback(C * plant, 1)

t, y = step_response(TF, T)

overshoot = (np.max(y) - 1.0) * 100

ess = np.abs(1.0 - y[-1])

rise_time = t[np.where(y >= 0.9)[0][0]] if any(y >= 0.9) else None
settling_idx = np.where(np.abs(y - 1.0) > 0.05)[0]

settling_time = t[settling_idx[-1]] if len(settling_idx) > 0 else t[-1]
return overshoot, ess, rise_time, settling_time

=== GA ===
def ga_pid(plant, pop_size=20, gen_max=30, mutation_rate=0.1, bounds=((0, 5), (0, 5), (0, 2))):
def random_individual():
return [random.uniform(*bounds[i]) for i in range(3)]

def crossover(pl, p2):
alpha = random.random()
return [(1 - alpha) * p1[i] + alpha * p2[i] for 1 in range(3)]

de

-

mutate(ind):

i = random.randint(0, 2)

ind[1] += random.uniform(-1, 1)

ind[1] = max(bounds[1][0], min(bounds[i][1], ind[i]))
return ind

population = [random_individual() for _ in range(pop_size)]

for _ in range(gen_max):

scores = [pid_itae(ind, plant) for ind in population]

ranked = sorted(zip(scores, population), key=lambda x: x[0])
population = [x[1] for x in ranked[:pop_size//2]]

children = []
while len(children) < pop_size - len(population):
pl, p2 = random.sample(population, 2)
child = crossover(pl, p2)
if random.random() < mutation_rate:
child = mutate(child)
children.append(child)

population += children
return ranked[0][1]

=== PSO ===

def pso_pid(plant, num_particles=15, max_iter=30, bounds=((0, 5), (0, 5), (0, 2))):
w=0.5
cl =1.5
c2 = 1.5
dim = 3
particles = np.random.uniform([b[@] for b in bounds], [b[1] for b in bounds], (num_particles, dim))
velocities = np.zeros_like(particles)
personal_best = particles.copy()
personal_best_scores = np.array([pid_itae(p, plant) for p in particles])
global_best = personal_best[np.argmin(personal_best_scores)]

for _ in range(max_iter):
for 1 in range(num_particles):

rl, r2 = np.random.rand(dim), np.random.rand(dim)

velocities[i] = (
w * velocities[i]
+ cl * r1 * (personal_best[i] - particles[i])
+ c2 * r2 * (global_best - particles[i])

)

particles[i] += velocities[i]

particles[i] = np.clip(particles[i], [b[@] for b in bounds], [b[1] for b in bounds])

score = pid_itae(particles[i], plant)

if score < personal_best_scores[i]:
personal_best[1] = particles[i].copy()
personal_best_scores[i] = score

global_best = personal_best[np.argmin(personal_best_scores)]
return global_best.tolist()

# === Ziegler-Nichols Tuning ===
def zn_pid(plant):
K=1.0
C = tf([K], [1])
loop = C * plant
gm, pm, wg, wp = margin(loop)
if gm == float("inf") or wp == 0 or np.isnan(gm) or np.isnan(wp):
print("ZN: margin gagal dihitung, fallback ke PID default")
return [1.0, 1.0, 0.0] # fallback

Ku = gm

Pu =2 * np.pi / wp
Kp = 0.6 * Ku

Ki = 1.2 * Ku / Pu
Kd = 0.075 * Ku * Pu

return [Kp, Ki, Kd]

# === Plot Comparation ===

def plot_comparison(pids, labels, plant):
plt.figure()
for pid, label in zip(pids, labels):
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Kp, Ki, Kd = pid
C = tf([Kd, Kp, Ki], [1, 0])
TF = feedback(C * plant, 1)
t, y = step_response(TF, T)
plt.plot(t, y, label=label)
plt.title("Step Response Comparison")
plt.xlabel("Time (s)")
plt.ylabel("Output")
plt.grid(True)
plt.legend()
plt.show()
=== Save Result as CSV ===
def save_results_to_csv(filename, methods, pids, times, plant):
with open(filename, mode='w', newline='') as file:
writer = csv.writer(file)
writer.writerow(["Method", "Kp", "Ki", "Kd", "ITAE", "Overshoot", "Steady State Error", "Rise Time", \
"Settling Time", "Execution Time (s)"])
for method, pid, elapsed in zip(methods, pids, times):
itae = pid_itae(pid, plant)
os, ess, tr, ts = analyze_response(pid, plant)
writer.writerow([method] + pid + [itae, os, ess, tr, ts, elapsed])
=== Main ===
if __name__ == "__main__":
plant = get_plant()
t0 = time.time()
pid_zn = zn_pid(plant)
t_zn = time.time() - tO
t0 = time.time()
pid_ga = ga_pid(plant)
t_ga = time.time() - tO
t0 = time.time()
pid_pso = pso_pid(plant)
t_pso = time.time() - tO
methods = ["Ziegler-Nichols", "Genetic Algorithm", "Particle Swarm"]
pids = [pid_zn, pid_ga, pid_pso]
times = [t_zn, t_ga, t_pso]
print("\nZiegler-Nichols PID:", pid_zn, f"(Waktu: {t_zn:.2f}s)")
print("GA PID:", pid_ga, f"(Waktu: {t_ga:.2f}s)")
print("PSO PID:", pid_pso, f"(Waktu: {t_pso:.2f}s)")
for method, pid, elapsed in zip(methods, pids, times):
os, ess, tr, ts = analyze_response(pid, plant)
print(f"{method}: Overshoot = {os:.2f}%, ess = {ess:.4f}, Rise Time = {tr:.2f}s, Settling Time = {ts:.2f}s, \

Time = {elapsed:.2f}s")

plot_comparison(pids, methods, plant)
save_results_to_csv("pid_comparison_results.csv", methods, pids, times, plant)
print("\nResult was saved at 'pid_comparison_results.csv'")

By taking a simple transfer function as shown in Figure 2 and the system transfer function as shown
in equation (1), a simulation was then carried out with the Python Program Code that was created and
the results were compared. A simple example is used in the simulation to simplify the simulation and

comparisons performed.

R(s) 1 Cl(s)
..-y-{ZéEi)—-—h—— G(s) - -
§'+6s+5

PID
controller

Figure 2. System block diagram used in simulations

FA=—

T s2+6s+5

(1)

Figures 3 and 4 show the simulation results of the three methods being compared to observe the
system's response to the step function test signal. Figure 3 is the first simulation, and Figure 4 is the

second simulation to verify the result of the first simulation.
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Figure 3. Simulation result 1
Ziegler-Nichols PID: [1.0, 1.0, 0.0] (Execution Time: 0.00s)
GA PID: [4.024979381891309, 4.887865592973621, 0.017178639320462367] (Execution Time: 3.97s)
PSO PID: [5.0, 5.0, 0.0] (Execution Time : 2.99s)
Ziegler-Nichols: Overshoot = -1.61%, ess = 0.0161, Rise Time = 11.26s, Settling Time = 14.55s, Time = 0.00s
Genetic Algorithm: Overshoot = 1.18%, ess = 0.0000, Rise Time = 2.08s, Settling Time = 2.40s, Time = 3.97s
Particle Swarm: Overshoot = -0.00%, ess = 0.0000, Rise Time = 2.04s, Settling Time = 2.48s, Time = 2.99s
Table 2. Numerical datas of PID parameters generated from the 15t simulation
Method Kp Ki Kd ITAE Overshoot | €34y St@te | pice Time | Setfling | Exccution
Error Time Time (s)
Ziegler-Nichols 1.00000 1.00000 0.00000| 22.08894 -1.60876 0.01609 11.26253 14.54910 0.00151
Genetic Algorithm 4.02498 4.88787 0.01718 0.92264 1.18237 0.00000 2.08417 2.40481 3.96686
Particle Swarm 5.00000 5.00000 0.00000 0.79987 0.00000 0.00000 2.04409 2.48497 2.99478
Step Response Comparison
1.0 4
0.8 4
L 0.6
=1
=)
=2
© 0.4 |
021 —— Ziegler-Nichols
Genetic Algorithm
04 ~— Particle Swarm
0 2.5 5 7.5 10 12.5 15 17.5 20
Time (s)
Figure 4. Simulation Result 2
Ziegler-Nichols PID: [1.0, 1.0, 0.0] (Execution Time: 0.00s)
GA PID: [4.587986891341883, 4.718672144798576, 0.33918189648143965] (Execution Time: 9.29s)
PSO PID: [5.0, 5.0, 0.0] (Execution Time: 6.80s)
Ziegler-Nichols: Overshoot = -1.61%, ess = 0.0161, Rise Time = 11.26s, Settling Time = 14.55s, Time = 0.00s
Genetic Algorithm: Overshoot = 0.20%, ess = 0.0000, Rise Time = 2.28s, Settling Time = 2.73s, Time = 9.29s
Particle Swarm: Overshoot = -0.00%, ess = 0.0000, Rise Time = 2.04s, Settling Time = 2.48s, Time = 6.80s
Table 3. Numerical datas of PID parameters generated from the 20d gimulation
Method Kp Ki Kd ITAE Overshoot Ste;‘iyms:ate Rise Time S;‘itl"i";g ET"I‘;C“:;:)“
Ziegler-Nichols 1.00000 1.00000 0.00000| 22.08894 -1.60876 0.01609| 11.26253| 14.54910 0.00311
Genetic Algorithm 4.58799 4.71867 0.33918 0.94581 0.20224 0.00000 2.28457 2.72545 9.29095
Particle Swarm 5.00000 5.00000 0.00000 0.79987 0.00000 0.00000 2.04409 2.48497 6.80492
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The evaluation was conducted by analyzing system performance against step input signals and
measuring several performance parameters, such as Integral Time-weighted Absolute Error (ITAE),
overshoot, rise time, settling time, and steady-state error (SSE). The results of two tests showed a
consistent performance pattern.

The Ziegler—Nichols method demonstrated a very stable system response with a very small
overshoot value (~1.61%). However, the response speed was relatively slow, with a rise time of 11.26
seconds and a settling time that was not reached within the 20-second simulation duration, in this case
~14.55 seconds. The high ITAE value (22.08894) also indicates that the system's accumulated error is
still large. This is consistent with the characteristics of the Ziegler—Nichols method, which was initially
developed for heuristic initial PID tuning of continuous-time linear systems without regard for optimal
performance [2].

In contrast, Genetic Algorithm method demonstrated significantly more responsive performance.
With a rise time of less than 3 seconds and a settling time of approximately under 3 seconds, this method
was able to quickly adjust the system to achieve stability. Although its overshoot was higher than PSO
(approximately 1.18%—0.20%), GA remained superior in terms of speed and effectiveness in reducing
error, as widely reported in the control optimization literature [ 14]. The lower ITAE value (~0.92-0.94)
compared to ZN indicates that the GA tuning results were more efficient in reducing the total error over
time.

The Particle Swarm Optimization method demonstrated the most balanced performance of the
three. With a smaller overshoot (approximately ~0%) and rise and settling times nearly equivalent to
GA, PSO provided excellent results in the context of a tradeoff between stability and speed. PSO is
known to excel in exploring and exploiting global solution spaces without requiring many explicit
parameters, as demonstrated in the literature15,16]. The similar ITAE values to GA (~0.79) indicate that
PSO is also capable of effectively minimizing errors.

In terms of steady-state error, both GA and PSO yielded the same final value (~0.0000),
significantly lower than the ZN method. This indicates that both Al-based methods can provide more
accurate and precise PID tuning, consistent with previous studies on artificial intelligence in system
control[17].

Overall, intelligent optimization approaches such as GA and PSO have been shown to provide
significantly superior PID tuning results compared to classical methods. GA is more suitable for systems
requiring very fast response, albeit with slightly larger overshoot. Meanwhile, PSO is well-suited for
systems requiring a compromise between stability and speed. On the other hand, the Ziegler—Nichols
method still has practical value as an initial approach or rough reference for PID tuning, although its
results are less than optimal in the context of modern dynamic performance.

The test results show that the Ziegler—Nichols (ZN) method provides the lowest performance, with
high ITAE, significant overshoot, and long rise and settling times, despite its very short execution time.
In contrast, artificial intelligence-based optimization methods, namely Genetic Algorithm (GA) and
Particle Swarm Optimization (PSO), consistently produce much better performance. Both methods are
able to reduce ITAE by more than 95%, eliminate steady-state error, and accelerate rise and settling
times by more than 80% compared to ZN. PSO shows more stable performance with zero overshoot and
relatively consistent results, while GA tends to vary but still produces significant improvements.

The application of GA and PSO in control systems provides practical advantages, they are more
efficient, accurate, and adaptive PID tuning compared to classical methods such as Ziegler—Nichols.
Both of them are capable for optimation performance in complex systems that are nonlinear or have
variable parameters, for example in industrial temperature control, electric motors, and renewable
energy systems. PSO is faster in convergence, while GA is more flexible in finding optimal solutions,
so both can be selected according to needs. Although they require higher computational costs, modern
hardware developments allow offline and online implementations, and Python with its various libraries
provides an alternative for researcher and engineers to do so.

4. CONCLUSION

Based on the simulation results, it can be concluded that tune PID parameters, can be improve use
artificial intelligence algorithms, intelligent optimization-based tuning methods such as the Genetic
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Algorithm (GA) and Particle Swarm Optimization (PSO) significantly improve performance compared
to the classical Ziegler-Nichols (ZN) method.

The Ziegler—Nichols method demonstrates good system stability with very small overshoot
values(~1.61%). ZN system response tends to be slow and less efficient in reducing the total error over
time, as reflected by the high ITAE value more than 22. This makes the ZN method more suitable as an
initial tuning approach or for systems that do not allow any overshoot at all. On the other hand, the
Genetic Algorithm method demonstrates very fast system response, both in terms of rise time (~2s) and
settling time(~2s), and very small steady-state error(~0). However, this method produces relatively
higher overshoot(~0.2) than PSO value (~0). The Particle Swarm Optimization method provides the
most balanced performance, with lower overshoot than GA while maintaining excellent response speed
and error efficiency. ITAE values produce by PSO (~0.7)are nearly equivalent to those of GA(~0.9),
demonstrating its high effectiveness in PID tuning.

Considering all evaluation parameters, the PSO method can be considered an optimal approach for
systems that require a balance between speed and stability. GA, on the other hand, excels in applications
that prioritize response speed. So, the Ziegler—Nichols method remains relevant as a baseline or initial
reference, although it is not as efficient as the two intelligent methods in complex dynamic control. Last
but not least Python with its libraries, is quite reliable for solving control problems both conventionally
and by applying Al algorithms. In the future, further exploration can be carried out on the use of Python
as a freeware for various experiments, especially in the field of control engineering.
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