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 This study aims to compare PID parameter settings with conventional 

tuning methods and tune methods using AI (artificial intelligence) 

algorithms. This study was conducted by means of simulation using a 

computer program created in Python and utilizing AI libraries to solve the 

problem of determining PID (proportional-integral-derivative) parameters. 

Two AI algorithms used in this study, namely the Genetic Algorithm (GA) 

and Particle Swarm Optimization (PSO) methods, were compared with the 

conventional Ziegler-Nichols method. The study was conducted by 

applying the PID parameters obtained to a certain transfer function and then 

comparing them on several related aspects. The results of the study showed 

that the solution obtained using the AI method requires a longer execution 

time, more than 2 seconds for PSO and more than 3 seconds for GA, while 

ZN requires less than 1 second. However, the AI method can provide better 

solutions, as can be seen from the magnitude of the ITAE that occurs, where 

GA and PSO provide ITAE less than 1 while ZN is more than 22.  
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1. INTRODUCTION  

PID is one of the most widely applied methods in automation and control systems. This method 

can be applied to control parameters in a system, such as temperature, speed, position, pressure, and 

others. The PID controller minimizes the error between the setpoint value (the desired value) and the 

output value produced by the system. In PID, three actions are associated with the controller: 

proportional, integral, and derivative. 

Proportional Component (P): This component is used to reduce errors by responding proportionally 

to the magnitude of the detected error. The larger the error, the greater the proportional response and 

reaction. Integral Component (I): This component is used to address errors that accumulate over time. 

This component is important for systems that experience small, continuous errors that cannot be 

addressed with the proportional component alone. Derivative Component (D): This component predicts 

future error trends based on the rate of error change. This component provides control to dampen rapid 

changes and avoid overshoot. 
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This method is quite simple, but determining the PID parameters, namely Kp, Ki, and Kd, which 

are specific to the conditions of the system in question, is quite a challenge. Mistakes in determining the 

Kp, Ki, and Kd parameters in a system may cause the system to become unstable or respond less than 

expected. For example, excessive overshoot or unacceptable stabilization time may occur[1]. Generally, 

PID parameter adjustment can be done through trial and error, which is, of course, time-consuming and 

results in less than optimal settings. Therefore, various more systematic methods such as grid search, 

genetic algorithms, or model-based optimization are used to help determine more precise parameters[2]. 

Classic methods such as Ziegler–Nichols (ZN) have long been used for PID tuning, but often result 

in high overshoot, long settling times, and steady-state errors that do not meet the needs of modern 

systems. To overcome these limitations, various artificial intelligence-based optimization methods, such 

as Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) have begun to be used because they 

are able to produce PID parameters that are closer to design specifications, namely fast, stable, and 

precise responses. 

The existence of computers and software and their development today are very important in this 

regard. Python, with its advantages, is also a choice in this regard. Python is a programming language 

that, in the last decade, has become a very popular computer programming language among engineers 

and researchers because of its ease of use and the variety of libraries available for numerical data 

processing, control analysis, and simulation. The main advantage of using Python in computer 

programming is its ability to integrate various libraries to handle complex technical aspects in a simple 

and intuitive way [3]. 

Python libraries were used in PID control implementation, including NumPy, SciPy, and Control. 

Numpy and scipy provide tools for performing fast numerical calculations, such as matrix operations, 

differentiation, and integration, which are crucial in managing dynamic systems [4]. The use of the 

matplotlib and plotly libraries enables the graphical visualization of simulation and experimental results, 

providing better insight into assessing system performance. The ability to visualize the system's response 

to changes in PID parameters or to external disturbances helps understand the behavior of more complex 

systems [5]. Python with the python-control library, as open-source software, offers a more affordable 

and flexible solution for teaching and research in the field of engineering control, covering the 

implementation of PID control in Python, including its use for simulation and analysis of control 

systems[6 - 8]. 

Implementation of PID control requires careful testing and parameter tuning, often performed 

directly on a physical system. However, simulation using computers and software allows users to 

achieve time and cost savings before physically implementing the control. Python allows users to do 

this. The use of Python allows faster experimentation with various parameter combinations to find 

optimal settings for P, I, and D parameters, which is not easily achieved with conventional methods 

[6,9]. 

Various advantages offered by Python are making more and more engineers, researchers, and 

developers turn to Python as a primary tool in managing PID control. Many articles have been written 

on the use of Python in the field of control, especially PID [10-11]. This shows Python's reliable 

performance in control system analysis. 

This article uses Python to simulate and analyze PID control parameter settings using conventional 

methods and advanced methods utilizing AI algorithms. Using an AI algorithm to determine PID 

controller parameters, there are several popular and effective algorithms. Each algorithm has its 

advantages and disadvantages, and the selection of the best algorithm depends on the specific application 

context, such as system complexity, computational time, and required accuracy. 

Several AI algorithms have been used for PID parameter optimization, including: 

1. Genetic Algorithm (GA). This algorithm has advantages, suitable for optimization problems with 

many parameters and without explicit functions, can work well on large and non-linear parameter 

spaces, and does not require gradients or deep function information. The disadvantage is that this 

algorithm requires more iterations and a longer time for convergence compared to other algorithms, 

as a result, it can be expensive in computation if the population size or number of generations is 

too large[12]. 
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2. Particle Swarm Optimization (PSO). The PSO algorithm has several advantages, including being 

faster than GA for many optimization problems, being able to avoid overfitting well in large 

parameter spaces, and achieving faster convergence compared to GA. However, its drawback is 

that it is not as effective as GA for optimization with many local minimum points [13]. 

3. Simulated Annealing (SA). This algorithm has the advantage of being easy to implement and does 

not require a lot of computation. It can avoid getting stuck in local solutions and potentially find a 

global solution. However, its drawback is that the search process can be very slow, especially in 

large search spaces, and it is not always as effective as GA or PSO in terms of speed and accuracy 

on some problems [12]. 

4. Reinforcement Learning (RL) has the advantage of being able to continuously adjust based on 

environmental feedback, learning in real time, and adapting to changes in the system. One of the 

disadvantage is that this algorithm requires a lot of data for training and iteration. 

GA and PSO are often used in PID parameter optimization because of their ability to explore a 

wide parameter space without requiring special assumptions about the form of the cost function[12]⁠. 

 

2. RESEARCH METHOD  

2.1. Research Approach 

This research uses a quantitative, experimental approach based on computer simulation. The 

objective is to assess the performance of a PID control system with parameters determined by an 

artificial intelligence (AI) algorithm, compared to conventionally determined PID parameters. 

2.2. Research Design 

The research design is carried out in several stages, as follows: 

1. System Modeling. At this stage, a mathematical model of the controlled system is developed, such 

as a first- or second-order linear system (e.g., a heating system, a motor positioning system, etc.). 

The system model is then simulated using the Python programming language. 

2. PID Control Design. The next stage is implementing PID control with initial parameters (the 

Ziegler-Nichols method can be used as a baseline), followed by developing the PID control function 

to be used in the simulation. 

3. AI Development and Integration. The next stage is developing an AI algorithm to optimize the PID 

parameters (Kp, Ki, Kd). The algorithms used in this research are the Genetic Algorithm (GA) and 

Particle Swarm Optimization (PSO). The objective function in the optimization process is to 

minimize system errors, such as: 

a. Integral of Time-weighted Absolute Error (ITAE) 

b. Overshoot, settling time, rise time 

4. Simulation and Data Collection: This stage runs simulations on two scenarios: a conventional PID 

with Ziegler-Nichols theory (baseline) and a PID with AI-optimized parameters, and then data is 

recorded on the system's response to disturbances or setpoint changes. 

5. System Performance Evaluation: The next stage is to analyze system performance based on 

response graphs and performance metrics, namely rise time, settling time, overshoot, and steady-

state error. The error value in this study uses the ITAE criterion. 

The flowchart of the research is illustrated in Figure 1 and Table 1 shows parameters used in 

simulations Figure 1 shows this research begins with system modeling in the form of a transfer function. 

Next, a PID control design is carried out using the conventional Ziegler–Nichols method and its 

performance is evaluated through simulation. To improve system performance, PID parameters are then 

optimized with AI-based algorithms, Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). 

The optimization results are simulated again to obtain system performance data which are then compared 

with the results of conventional methods. Based on the results of the comparative evaluation, an analysis 

is carried out and conclusions are drawn regarding the effectiveness of the optimization method 

compared to the classical approach.  

2.3. Tools and Equipment  

1. Programming Language: Python 

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&
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2. The Python libraries used in this research are numpy, scipy, and matplotlib for numerical simulation 

and visualization, the control library for dynamic system models, and the Python library for AI. 

2.4. Data Collection Techniques 

Data is obtained from simulation results in the form of system response graphs and performance 

metric values for each scenario. The simulation is run several times to validate the results. 

2.5. Data Analysis Techniques 

Analysis is conducted quantitatively by comparing simulation results between conventional PID 

and PID-AI, presented in the form of comparison tables and system performance graphs. 

Figure 1. Flowchart of Research Method 

Pseudocode used for PID + AI  Simulation, 
================================================================================================= 
# Step 1: System Model 
def system_model(K, T, time): 
    # return response of a transfer function (e.g., first order system) 
    return control.TransferFunction([K], [T, 1]) 
 
# Step 2: PID Evaluation 
def pid_simulation(Kp, Ki, Kd, system, t): 
    # calculate system respons use PID control 
    # use control.feedback and control.forced_response 
    return output, error_metrics 
 
# Step 3: Objectif Function for AI 
def objective_function(params): 
    Kp, Ki, Kd = params 
    output, error = pid_simulation(Kp, Ki, Kd, system_model(...), t) 
    # return ITAE 
    return compute_ITAE(error, t) 
 
# Step 4: Optimatiton with AI (PSO or GA) 
best_params = run_ai_optimizer(objective_function) 
 
# Step 5: Repeat Simulation with best Parameter 
output_ai, error_ai = pid_simulation(*best_params, system_model(...), t) 
 
# Step 6: Compare with Conventional PID method 
output_std, error_std = pid_simulation(Kp_manual, Ki_manual, Kd_manual, system_model(...), t) 
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# Step 7: Visualisation and Analisys 
plot_comparison(output_std, output_ai) 
report_performance_metrics(error_std, error_ai) 
=================================================================================================  

Table 1. Parameters Simulations 

Algorithm  Parameters Values (Default in code) 

   

GA (Genetic Algorithm) Population Size (pop_size) 20 

 Maximum Generations (gen_max) 30 

 Mutation Rate (mutation_rate) 0.1 

 PID Parameter Bounds (bounds) Kp ∈ [0.5], Ki ∈ [0.5], Kd ∈ [0.2]  

PSO (Particle Swarm Optimization) Number of Particles (num_particles) 15 

 Maximum Iterations (max_iter) 30 

 Inertia Weight (w) 0.5 

 Learning Coefficient (c1, c2) 1.5, 1.5 

 PID Parameter Bounds (bounds) Kp∈[0.5],Ki∈[0.5],Kd∈[0.2] 

ZN (Ziegler–Nichols)  Calculation based on gain margin (Ku) and ultimate 

period (Pu) 

Calculation base on formula 

Aspect Simulation Time (T_FINAL) 20 s 

 Number of Time Points (T_STEPS) 500 

 Time Range (T) 0 – 20 s 

 Plant G(s)=1/(s2+6s+5) 

 Input Step input = 1 

 Evaluation Criteria ITAE  

 Performance Analysis Overshoot, Rise Time, Settling Time, Steady-

State Error 

 

3. RESULTS AND DISCUSSION  

For observation and comparison in this study, a Python program was built using three selected 

methods, namely the Ziegler-Nichols method, representing the conventional method, and the GA and 

PSO methods, representing the AI method. The three methods produce a graph and several important 

data points related to the methods above. The developed Python code allows users to change the system's 

transfer function value, and generate PID parameter values, namely overshot, ITAE error, rise time, 

settling time, and the required execution time. Below is Python code for the simulation. 

================================================================================================= 
# compare_pid_methods.py 
import numpy as np 
import matplotlib.pyplot as plt 
from control import tf, feedback, step_response, margin 
import random, csv, time 
 
T_FINAL = 20  # simulation duration for step response 
T_STEPS = 500  # number of time 
T = np.linspace(0, T_FINAL, T_STEPS) 
 
# === Plant === 
def get_plant(): 
    num = [1] 
    den = [1, 6, 5] 
    return tf(num, den) 
 
# === Objecctive Function: ITAE === 
def pid_itae(params, plant): 
    Kp, Ki, Kd = params 
    if Kp < 0 or Ki < 0 or Kd < 0: 
        print(f"Invalid PID: {params}") 
        return 1e6 
    try: 
        C = tf([Kd, Kp, Ki], [1, 0]) 
        closed_loop = feedback(C * plant, 1) 
        t, y = step_response(closed_loop, T) 
        if np.any(np.isnan(y)) or np.any(np.isinf(y)): 
            print(f"Invalid response: {params}") 
            return 1e6 
        e = 1 - y 
     #   itae = simpson(t * np.abs(e), t) 
     #   itae = simps(t * np.abs(e), t) 
        itae = np.trapz(t * np.abs(e), t) 
        return itae 
    except Exception as e: 
        print(f"Error for PID {params}: {e}") 
        return 1e6 
 
# === Syatem Respon Analisys === 
def analyze_response(pid, plant): 
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    Kp, Ki, Kd = pid 
    C = tf([Kd, Kp, Ki], [1, 0]) 
    TF = feedback(C * plant, 1) 
    t, y = step_response(TF, T) 
    overshoot = (np.max(y) - 1.0) * 100 
    ess = np.abs(1.0 - y[-1]) 
    rise_time = t[np.where(y >= 0.9)[0][0]] if any(y >= 0.9) else None 
    settling_idx = np.where(np.abs(y - 1.0) > 0.05)[0] 
    settling_time = t[settling_idx[-1]] if len(settling_idx) > 0 else t[-1] 
    return overshoot, ess, rise_time, settling_time 
 
# === GA === 
def ga_pid(plant, pop_size=20, gen_max=30, mutation_rate=0.1, bounds=((0, 5), (0, 5), (0, 2))): 
    def random_individual(): 
        return [random.uniform(*bounds[i]) for i in range(3)] 
 
    def crossover(p1, p2): 
        alpha = random.random() 
        return [(1 - alpha) * p1[i] + alpha * p2[i] for i in range(3)] 
 
    def mutate(ind): 
        i = random.randint(0, 2) 
        ind[i] += random.uniform(-1, 1) 
        ind[i] = max(bounds[i][0], min(bounds[i][1], ind[i])) 
        return ind 
 
    population = [random_individual() for _ in range(pop_size)] 
    for _ in range(gen_max): 
        scores = [pid_itae(ind, plant) for ind in population] 
        ranked = sorted(zip(scores, population), key=lambda x: x[0]) 
        population = [x[1] for x in ranked[:pop_size//2]] 
 
        children = [] 
        while len(children) < pop_size - len(population): 
            p1, p2 = random.sample(population, 2) 
            child = crossover(p1, p2) 
            if random.random() < mutation_rate: 
                child = mutate(child) 
            children.append(child) 
 
        population += children 
    return ranked[0][1] 
 
# === PSO === 
def pso_pid(plant, num_particles=15, max_iter=30, bounds=((0, 5), (0, 5), (0, 2))): 
    w = 0.5 
    c1 = 1.5 
    c2 = 1.5 
    dim = 3 
    particles = np.random.uniform([b[0] for b in bounds], [b[1] for b in bounds], (num_particles, dim)) 
    velocities = np.zeros_like(particles) 
    personal_best = particles.copy() 
    personal_best_scores = np.array([pid_itae(p, plant) for p in particles]) 
    global_best = personal_best[np.argmin(personal_best_scores)] 
 
    for _ in range(max_iter): 
        for i in range(num_particles): 
            r1, r2 = np.random.rand(dim), np.random.rand(dim) 
            velocities[i] = ( 
                w * velocities[i] 
                + c1 * r1 * (personal_best[i] - particles[i]) 
                + c2 * r2 * (global_best - particles[i]) 
            ) 
            particles[i] += velocities[i] 
            particles[i] = np.clip(particles[i], [b[0] for b in bounds], [b[1] for b in bounds]) 
 
            score = pid_itae(particles[i], plant) 
            if score < personal_best_scores[i]: 
                personal_best[i] = particles[i].copy() 
                personal_best_scores[i] = score 
 
        global_best = personal_best[np.argmin(personal_best_scores)] 
 
    return global_best.tolist() 
 
# === Ziegler-Nichols Tuning === 
def zn_pid(plant): 
    K = 1.0 
    C = tf([K], [1]) 
    loop = C * plant 
    gm, pm, wg, wp = margin(loop) 
    if gm == float("inf") or wp == 0 or np.isnan(gm) or np.isnan(wp): 
        print("ZN: margin gagal dihitung, fallback ke PID default") 
        return [1.0, 1.0, 0.0]  # fallback 
 
    Ku = gm 
    Pu = 2 * np.pi / wp 
    Kp = 0.6 * Ku 
    Ki = 1.2 * Ku / Pu 
    Kd = 0.075 * Ku * Pu 
    return [Kp, Ki, Kd] 
 
# === Plot Comparation === 
def plot_comparison(pids, labels, plant): 
    plt.figure() 
    for pid, label in zip(pids, labels): 
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        Kp, Ki, Kd = pid 
        C = tf([Kd, Kp, Ki], [1, 0]) 
        TF = feedback(C * plant, 1) 
        t, y = step_response(TF, T) 
        plt.plot(t, y, label=label) 
    plt.title("Step Response Comparison") 
    plt.xlabel("Time (s)") 
    plt.ylabel("Output") 
    plt.grid(True) 
    plt.legend() 
    plt.show() 
 
# === Save Result as CSV === 
def save_results_to_csv(filename, methods, pids, times, plant): 
    with open(filename, mode='w', newline='') as file: 
        writer = csv.writer(file) 
        writer.writerow(["Method", "Kp", "Ki", "Kd", "ITAE", "Overshoot", "Steady State Error", "Rise Time", \ 
                         "Settling Time", "Execution Time (s)"]) 
        for method, pid, elapsed in zip(methods, pids, times): 
            itae = pid_itae(pid, plant) 
            os, ess, tr, ts = analyze_response(pid, plant) 
            writer.writerow([method] + pid + [itae, os, ess, tr, ts, elapsed]) 
 
# === Main === 
if __name__ == "__main__": 
    plant = get_plant() 
 
    t0 = time.time() 
    pid_zn = zn_pid(plant) 
    t_zn = time.time() - t0 
 
    t0 = time.time() 
    pid_ga = ga_pid(plant) 
    t_ga = time.time() - t0 
 
    t0 = time.time() 
    pid_pso = pso_pid(plant) 
    t_pso = time.time() - t0 
 
    methods = ["Ziegler-Nichols", "Genetic Algorithm", "Particle Swarm"] 
    pids = [pid_zn, pid_ga, pid_pso] 
    times = [t_zn, t_ga, t_pso] 
 
    print("\nZiegler-Nichols PID:", pid_zn, f"(Waktu: {t_zn:.2f}s)") 
    print("GA PID:", pid_ga, f"(Waktu: {t_ga:.2f}s)") 
    print("PSO PID:", pid_pso, f"(Waktu: {t_pso:.2f}s)") 
 
    for method, pid, elapsed in zip(methods, pids, times): 
        os, ess, tr, ts = analyze_response(pid, plant) 
        print(f"{method}: Overshoot = {os:.2f}%, ess = {ess:.4f}, Rise Time = {tr:.2f}s, Settling Time = {ts:.2f}s, \ 
                 Time = {elapsed:.2f}s") 
 
    plot_comparison(pids, methods, plant) 
    save_results_to_csv("pid_comparison_results.csv", methods, pids, times, plant) 
    print("\nResult was saved at 'pid_comparison_results.csv'") 

 
================================================================================================= 

 

By taking a simple transfer function as shown in Figure 2 and the system transfer function as shown 

in equation (1), a simulation was then carried out with the Python Program Code that was created and 

the results were compared. A simple example is used in the simulation to simplify the simulation and 

comparisons performed. 

 
Figure 2. System block diagram used in simulations 

𝐹𝐴 =
1

𝑠2+6𝑠+5
     (1) 

Figures 3 and 4 show the simulation results of the three methods being compared to observe the 

system's response to the step function test signal. Figure 3 is the first simulation, and Figure 4 is the 

second simulation to verify the result of the first simulation. 
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Figure 3. Simulation result 1 

 
Ziegler-Nichols PID: [1.0, 1.0, 0.0] (Execution Time: 0.00s) 
GA PID: [4.024979381891309, 4.887865592973621, 0.017178639320462367] (Execution Time: 3.97s) 
PSO PID: [5.0, 5.0, 0.0] (Execution Time : 2.99s) 
Ziegler-Nichols: Overshoot = -1.61%, ess = 0.0161, Rise Time = 11.26s, Settling Time = 14.55s, Time = 0.00s 
Genetic Algorithm: Overshoot = 1.18%, ess = 0.0000, Rise Time = 2.08s, Settling Time = 2.40s, Time = 3.97s 
Particle Swarm: Overshoot = -0.00%, ess = 0.0000, Rise Time = 2.04s, Settling Time = 2.48s, Time = 2.99s 

 

Table 2. Numerical datas of PID parameters generated from the 1st simulation 

Method Kp Ki Kd ITAE Overshoot 
Steady State 

Error 
Rise Time 

Settling 

Time 

Execution 

Time (s) 

Ziegler-Nichols 1.00000 1.00000 0.00000 22.08894 -1.60876 0.01609 11.26253 14.54910 0.00151 

Genetic Algorithm 4.02498 4.88787 0.01718 0.92264 1.18237 0.00000 2.08417 2.40481 3.96686 

Particle Swarm 5.00000 5.00000 0.00000 0.79987 0.00000 0.00000 2.04409 2.48497 2.99478 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4. Simulation Result 2 

 
Ziegler-Nichols PID: [1.0, 1.0, 0.0] (Execution Time: 0.00s) 
GA PID: [4.587986891341883, 4.718672144798576, 0.33918189648143965] (Execution Time: 9.29s) 
PSO PID: [5.0, 5.0, 0.0] (Execution Time: 6.80s) 
Ziegler-Nichols: Overshoot = -1.61%, ess = 0.0161, Rise Time = 11.26s, Settling Time = 14.55s, Time = 0.00s 
Genetic Algorithm: Overshoot = 0.20%, ess = 0.0000, Rise Time = 2.28s, Settling Time = 2.73s, Time = 9.29s 
Particle Swarm: Overshoot = -0.00%, ess = 0.0000, Rise Time = 2.04s, Settling Time = 2.48s, Time = 6.80s 

 

Table 3. Numerical datas of PID parameters generated from the 2nd simulation 

Method Kp Ki Kd ITAE Overshoot 
Steady State 

Error 
Rise Time 

Settling 

Time 

Execution 

Time (s) 

Ziegler-Nichols 1.00000 1.00000 0.00000 22.08894 -1.60876 0.01609 11.26253 14.54910 0.00311 

Genetic Algorithm 4.58799 4.71867 0.33918 0.94581 0.20224 0.00000 2.28457 2.72545 9.29095 

Particle Swarm 5.00000 5.00000 0.00000 0.79987 0.00000 0.00000 2.04409 2.48497 6.80492 
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The evaluation was conducted by analyzing system performance against step input signals and 

measuring several performance parameters, such as Integral Time-weighted Absolute Error (ITAE), 

overshoot, rise time, settling time, and steady-state error (SSE). The results of two tests showed a 

consistent performance pattern. 

The Ziegler–Nichols method demonstrated a very stable system response with a very small 

overshoot value (~1.61%). However, the response speed was relatively slow, with a rise time of 11.26 

seconds and a settling time that was not reached within the 20-second simulation duration, in this case 

~14.55 seconds. The high ITAE value (22.08894) also indicates that the system's accumulated error is 

still large. This is consistent with the characteristics of the Ziegler–Nichols method, which was initially 

developed for heuristic initial PID tuning of continuous-time linear systems without regard for optimal 

performance [2]. 

In contrast, Genetic Algorithm method demonstrated significantly more responsive performance. 

With a rise time of less than 3 seconds and a settling time of approximately under 3 seconds, this method 

was able to quickly adjust the system to achieve stability. Although its overshoot was higher than PSO 

(approximately 1.18%–0.20%), GA remained superior in terms of speed and effectiveness in reducing 

error, as widely reported in the control optimization literature [14]. The lower ITAE value (~0.92–0.94) 

compared to ZN indicates that the GA tuning results were more efficient in reducing the total error over 

time. 

The Particle Swarm Optimization method demonstrated the most balanced performance of the 

three. With a smaller overshoot (approximately ~0%) and rise and settling times nearly equivalent to 

GA, PSO provided excellent results in the context of a tradeoff between stability and speed. PSO is 

known to excel in exploring and exploiting global solution spaces without requiring many explicit 

parameters, as demonstrated in the literature15,16]. The similar ITAE values to GA (~0.79) indicate that 

PSO is also capable of effectively minimizing errors. 

In terms of steady-state error, both GA and PSO yielded the same final value (~0.0000), 

significantly lower than the ZN method. This indicates that both AI-based methods can provide more 

accurate and precise PID tuning, consistent with previous studies on artificial intelligence in system 

control[17]. 

Overall, intelligent optimization approaches such as GA and PSO have been shown to provide 

significantly superior PID tuning results compared to classical methods. GA is more suitable for systems 

requiring very fast response, albeit with slightly larger overshoot. Meanwhile, PSO is well-suited for 

systems requiring a compromise between stability and speed. On the other hand, the Ziegler–Nichols 

method still has practical value as an initial approach or rough reference for PID tuning, although its 

results are less than optimal in the context of modern dynamic performance. 

The test results show that the Ziegler–Nichols (ZN) method provides the lowest performance, with 

high ITAE, significant overshoot, and long rise and settling times, despite its very short execution time. 

In contrast, artificial intelligence-based optimization methods, namely Genetic Algorithm (GA) and 

Particle Swarm Optimization (PSO), consistently produce much better performance. Both methods are 

able to reduce ITAE by more than 95%, eliminate steady-state error, and accelerate rise and settling 

times by more than 80% compared to ZN. PSO shows more stable performance with zero overshoot and 

relatively consistent results, while GA tends to vary but still produces significant improvements. 

The application of GA and PSO in control systems provides practical advantages, they are more 

efficient, accurate, and adaptive PID tuning compared to classical methods such as Ziegler–Nichols. 

Both of them are capable for optimation performance in complex systems that are nonlinear or have 

variable parameters, for example in industrial temperature control, electric motors, and renewable 

energy systems. PSO is faster in convergence, while GA is more flexible in finding optimal solutions, 

so both can be selected according to needs. Although they require higher computational costs, modern 

hardware developments allow offline and online implementations, and Python with its various libraries 

provides an alternative for researcher and engineers to do so. 
 

4. CONCLUSION  

Based on the simulation results, it can be concluded that tune PID parameters, can be improve use 

artificial intelligence algorithms, intelligent optimization-based tuning methods such as the Genetic 
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Algorithm (GA) and Particle Swarm Optimization (PSO) significantly improve performance compared 

to the classical Ziegler-Nichols (ZN) method. 

The Ziegler–Nichols method demonstrates good system stability with very small overshoot 

values(~1.61%). ZN system response tends to be slow and less efficient in reducing the total error over 

time, as reflected by the high ITAE value more than 22. This makes the ZN method more suitable as an 

initial tuning approach or for systems that do not allow any overshoot at all. On the other hand, the 

Genetic Algorithm method demonstrates very fast system response, both in terms of rise time (~2s) and 

settling time(~2s), and very small steady-state error(~0). However, this method produces relatively 

higher overshoot(~0.2) than PSO value (~0). The Particle Swarm Optimization method provides the 

most balanced performance, with lower overshoot than GA while maintaining excellent response speed 

and error efficiency. ITAE values produce by PSO (~0.7)are nearly equivalent to those of GA(~0.9), 

demonstrating its high effectiveness in PID tuning. 

Considering all evaluation parameters, the PSO method can be considered an optimal approach for 

systems that require a balance between speed and stability. GA, on the other hand, excels in applications 

that prioritize response speed. So, the Ziegler–Nichols method remains relevant as a baseline or initial 

reference, although it is not as efficient as the two intelligent methods in complex dynamic control. Last 

but not least Python with its libraries, is quite reliable for solving control problems both conventionally 

and by applying AI algorithms. In the future, further exploration can be carried out on the use of Python 

as a freeware for various experiments, especially in the field of control engineering. 
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