

Volume 12, Issue 2, October 2025, pp. 234-244

ISSN 2355-5068 ; e-ISSN 2622-4852

DOI: 10.33019/jurnalecotipe.v12i2.4574

234

Homepage : https://ecotipe.ubb.ac.id/ Email : jurnalecotipe@ubb.ac.id

A Comparative Study of Traditional PID Tuning Techniques and

AI-Based Algorithmic Approaches Utilizing the Python Control

Library

Purwadi Joko Widodo1, Heru Sukanto2, Budi Santoso3, Fitrian Imaduddin4, Lullus

Lambang Govinda Hidayat5, Joko Triyono6 , Iwan Instanto7, Rahman Wijaya8

1,2,3,4,5,6,7,8 Sebelas Maret University, Jl. Ir. Sutami Kentingan Surakarta, Indonesia

ARTICLE INFO ABSTRACT

Article historys:

Received : 13/08/2025
Revised : 23/09/2025
Accepted : 30/10/2025

 This study aims to compare PID parameter settings with conventional

tuning methods and tune methods using AI (artificial intelligence)

algorithms. This study was conducted by means of simulation using a

computer program created in Python and utilizing AI libraries to solve the

problem of determining PID (proportional-integral-derivative) parameters.

Two AI algorithms used in this study, namely the Genetic Algorithm (GA)

and Particle Swarm Optimization (PSO) methods, were compared with the

conventional Ziegler-Nichols method. The study was conducted by

applying the PID parameters obtained to a certain transfer function and then

comparing them on several related aspects. The results of the study showed

that the solution obtained using the AI method requires a longer execution

time, more than 2 seconds for PSO and more than 3 seconds for GA, while

ZN requires less than 1 second. However, the AI method can provide better

solutions, as can be seen from the magnitude of the ITAE that occurs, where

GA and PSO provide ITAE less than 1 while ZN is more than 22.

Keywords:

Artificial Intelligence; Genetic

Algorithm; Particle Swarm

Optimization; PID Parameter;

Ziegler-Nichols; Python Control

Library; Python Simulation

This work is licensed under a Creative Commons Attribution 4.0 International License

Corresponding Author:

Purwadi Joko Widodo
Sebelas Maret University, Jl. Ir. Sutami Surakarta, Jawa Tengah, Indonesia

Email: purwadijokow@staff.uns.ac.id.

1. INTRODUCTION

PID is one of the most widely applied methods in automation and control systems. This method

can be applied to control parameters in a system, such as temperature, speed, position, pressure, and

others. The PID controller minimizes the error between the setpoint value (the desired value) and the

output value produced by the system. In PID, three actions are associated with the controller:

proportional, integral, and derivative.

Proportional Component (P): This component is used to reduce errors by responding proportionally

to the magnitude of the detected error. The larger the error, the greater the proportional response and

reaction. Integral Component (I): This component is used to address errors that accumulate over time.

This component is important for systems that experience small, continuous errors that cannot be

addressed with the proportional component alone. Derivative Component (D): This component predicts

future error trends based on the rate of error change. This component provides control to dampen rapid

changes and avoid overshoot.

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&
http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Volume 12, Issue 2, October 2025, pp. 234-244

ISSN 2355-5068 ; e-ISSN 2622-4852

DOI: 10.33019/jurnalecotipe.v12i2.4574

235

A Comparative Study of Traditional PID Tuning Techniques and AI-Based Algorithmic…(Purwadi Joko Widodo et al)

This method is quite simple, but determining the PID parameters, namely Kp, Ki, and Kd, which

are specific to the conditions of the system in question, is quite a challenge. Mistakes in determining the

Kp, Ki, and Kd parameters in a system may cause the system to become unstable or respond less than

expected. For example, excessive overshoot or unacceptable stabilization time may occur[1]. Generally,

PID parameter adjustment can be done through trial and error, which is, of course, time-consuming and

results in less than optimal settings. Therefore, various more systematic methods such as grid search,

genetic algorithms, or model-based optimization are used to help determine more precise parameters[2].

Classic methods such as Ziegler–Nichols (ZN) have long been used for PID tuning, but often result

in high overshoot, long settling times, and steady-state errors that do not meet the needs of modern

systems. To overcome these limitations, various artificial intelligence-based optimization methods, such

as Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) have begun to be used because they

are able to produce PID parameters that are closer to design specifications, namely fast, stable, and

precise responses.

The existence of computers and software and their development today are very important in this

regard. Python, with its advantages, is also a choice in this regard. Python is a programming language

that, in the last decade, has become a very popular computer programming language among engineers

and researchers because of its ease of use and the variety of libraries available for numerical data

processing, control analysis, and simulation. The main advantage of using Python in computer

programming is its ability to integrate various libraries to handle complex technical aspects in a simple

and intuitive way [3].

Python libraries were used in PID control implementation, including NumPy, SciPy, and Control.

Numpy and scipy provide tools for performing fast numerical calculations, such as matrix operations,

differentiation, and integration, which are crucial in managing dynamic systems [4]. The use of the

matplotlib and plotly libraries enables the graphical visualization of simulation and experimental results,

providing better insight into assessing system performance. The ability to visualize the system's response

to changes in PID parameters or to external disturbances helps understand the behavior of more complex

systems [5]. Python with the python-control library, as open-source software, offers a more affordable

and flexible solution for teaching and research in the field of engineering control, covering the

implementation of PID control in Python, including its use for simulation and analysis of control

systems[6 - 8].

Implementation of PID control requires careful testing and parameter tuning, often performed

directly on a physical system. However, simulation using computers and software allows users to

achieve time and cost savings before physically implementing the control. Python allows users to do

this. The use of Python allows faster experimentation with various parameter combinations to find

optimal settings for P, I, and D parameters, which is not easily achieved with conventional methods

[6,9].

Various advantages offered by Python are making more and more engineers, researchers, and

developers turn to Python as a primary tool in managing PID control. Many articles have been written

on the use of Python in the field of control, especially PID [10-11]. This shows Python's reliable

performance in control system analysis.

This article uses Python to simulate and analyze PID control parameter settings using conventional

methods and advanced methods utilizing AI algorithms. Using an AI algorithm to determine PID

controller parameters, there are several popular and effective algorithms. Each algorithm has its

advantages and disadvantages, and the selection of the best algorithm depends on the specific application

context, such as system complexity, computational time, and required accuracy.

Several AI algorithms have been used for PID parameter optimization, including:

1. Genetic Algorithm (GA). This algorithm has advantages, suitable for optimization problems with

many parameters and without explicit functions, can work well on large and non-linear parameter

spaces, and does not require gradients or deep function information. The disadvantage is that this

algorithm requires more iterations and a longer time for convergence compared to other algorithms,

as a result, it can be expensive in computation if the population size or number of generations is

too large[12].

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&
http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&

Volume 12, Issue 2, October 2025, pp. 234-244

ISSN 2355-5068 ; e-ISSN 2622-4852

DOI: 10.33019/jurnalecotipe.v12i2.4574

236

A Comparative Study of Traditional PID Tuning Techniques and AI-Based Algorithmic… (Purwadi Joko Widodo, et al)

2. Particle Swarm Optimization (PSO). The PSO algorithm has several advantages, including being

faster than GA for many optimization problems, being able to avoid overfitting well in large

parameter spaces, and achieving faster convergence compared to GA. However, its drawback is

that it is not as effective as GA for optimization with many local minimum points [13].

3. Simulated Annealing (SA). This algorithm has the advantage of being easy to implement and does

not require a lot of computation. It can avoid getting stuck in local solutions and potentially find a

global solution. However, its drawback is that the search process can be very slow, especially in

large search spaces, and it is not always as effective as GA or PSO in terms of speed and accuracy

on some problems [12].

4. Reinforcement Learning (RL) has the advantage of being able to continuously adjust based on

environmental feedback, learning in real time, and adapting to changes in the system. One of the

disadvantage is that this algorithm requires a lot of data for training and iteration.

GA and PSO are often used in PID parameter optimization because of their ability to explore a

wide parameter space without requiring special assumptions about the form of the cost function[12]⁠.

2. RESEARCH METHOD

2.1. Research Approach

This research uses a quantitative, experimental approach based on computer simulation. The

objective is to assess the performance of a PID control system with parameters determined by an

artificial intelligence (AI) algorithm, compared to conventionally determined PID parameters.

2.2. Research Design

The research design is carried out in several stages, as follows:

1. System Modeling. At this stage, a mathematical model of the controlled system is developed, such

as a first- or second-order linear system (e.g., a heating system, a motor positioning system, etc.).

The system model is then simulated using the Python programming language.

2. PID Control Design. The next stage is implementing PID control with initial parameters (the

Ziegler-Nichols method can be used as a baseline), followed by developing the PID control function

to be used in the simulation.

3. AI Development and Integration. The next stage is developing an AI algorithm to optimize the PID

parameters (Kp, Ki, Kd). The algorithms used in this research are the Genetic Algorithm (GA) and

Particle Swarm Optimization (PSO). The objective function in the optimization process is to

minimize system errors, such as:

a. Integral of Time-weighted Absolute Error (ITAE)

b. Overshoot, settling time, rise time

4. Simulation and Data Collection: This stage runs simulations on two scenarios: a conventional PID

with Ziegler-Nichols theory (baseline) and a PID with AI-optimized parameters, and then data is

recorded on the system's response to disturbances or setpoint changes.

5. System Performance Evaluation: The next stage is to analyze system performance based on

response graphs and performance metrics, namely rise time, settling time, overshoot, and steady-

state error. The error value in this study uses the ITAE criterion.

The flowchart of the research is illustrated in Figure 1 and Table 1 shows parameters used in

simulations Figure 1 shows this research begins with system modeling in the form of a transfer function.

Next, a PID control design is carried out using the conventional Ziegler–Nichols method and its

performance is evaluated through simulation. To improve system performance, PID parameters are then

optimized with AI-based algorithms, Genetic Algorithm (GA) and Particle Swarm Optimization (PSO).

The optimization results are simulated again to obtain system performance data which are then compared

with the results of conventional methods. Based on the results of the comparative evaluation, an analysis

is carried out and conclusions are drawn regarding the effectiveness of the optimization method

compared to the classical approach.

2.3. Tools and Equipment

1. Programming Language: Python

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&
http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&

Volume 12, Issue 2, October 2025, pp. 234-244

ISSN 2355-5068 ; e-ISSN 2622-4852

DOI: 10.33019/jurnalecotipe.v12i2.4574

237

A Comparative Study of Traditional PID Tuning Techniques and AI-Based Algorithmic…(Purwadi Joko Widodo et al)

2. The Python libraries used in this research are numpy, scipy, and matplotlib for numerical simulation

and visualization, the control library for dynamic system models, and the Python library for AI.

2.4. Data Collection Techniques

Data is obtained from simulation results in the form of system response graphs and performance

metric values for each scenario. The simulation is run several times to validate the results.

2.5. Data Analysis Techniques

Analysis is conducted quantitatively by comparing simulation results between conventional PID

and PID-AI, presented in the form of comparison tables and system performance graphs.

Figure 1. Flowchart of Research Method

Pseudocode used for PID + AI Simulation,
===
Step 1: System Model
def system_model(K, T, time):
 # return response of a transfer function (e.g., first order system)
 return control.TransferFunction([K], [T, 1])

Step 2: PID Evaluation
def pid_simulation(Kp, Ki, Kd, system, t):
 # calculate system respons use PID control
 # use control.feedback and control.forced_response
 return output, error_metrics

Step 3: Objectif Function for AI
def objective_function(params):
 Kp, Ki, Kd = params
 output, error = pid_simulation(Kp, Ki, Kd, system_model(...), t)
 # return ITAE
 return compute_ITAE(error, t)

Step 4: Optimatiton with AI (PSO or GA)
best_params = run_ai_optimizer(objective_function)

Step 5: Repeat Simulation with best Parameter
output_ai, error_ai = pid_simulation(*best_params, system_model(...), t)

Step 6: Compare with Conventional PID method
output_std, error_std = pid_simulation(Kp_manual, Ki_manual, Kd_manual, system_model(...), t)

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&
http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&

Volume 12, Issue 2, October 2025, pp. 234-244

ISSN 2355-5068 ; e-ISSN 2622-4852

DOI: 10.33019/jurnalecotipe.v12i2.4574

238

A Comparative Study of Traditional PID Tuning Techniques and AI-Based Algorithmic… (Purwadi Joko Widodo, et al)

Step 7: Visualisation and Analisys
plot_comparison(output_std, output_ai)
report_performance_metrics(error_std, error_ai)
===

Table 1. Parameters Simulations

Algorithm Parameters Values (Default in code)

GA (Genetic Algorithm) Population Size (pop_size) 20

 Maximum Generations (gen_max) 30

 Mutation Rate (mutation_rate) 0.1

 PID Parameter Bounds (bounds) Kp ∈ [0.5], Ki ∈ [0.5], Kd ∈ [0.2]

PSO (Particle Swarm Optimization) Number of Particles (num_particles) 15

 Maximum Iterations (max_iter) 30

 Inertia Weight (w) 0.5

 Learning Coefficient (c1, c2) 1.5, 1.5

 PID Parameter Bounds (bounds) Kp∈[0.5],Ki∈[0.5],Kd∈[0.2]

ZN (Ziegler–Nichols) Calculation based on gain margin (Ku) and ultimate

period (Pu)

Calculation base on formula

Aspect Simulation Time (T_FINAL) 20 s

 Number of Time Points (T_STEPS) 500

 Time Range (T) 0 – 20 s

 Plant G(s)=1/(s2+6s+5)

 Input Step input = 1

 Evaluation Criteria ITAE

 Performance Analysis Overshoot, Rise Time, Settling Time, Steady-

State Error

3. RESULTS AND DISCUSSION

For observation and comparison in this study, a Python program was built using three selected

methods, namely the Ziegler-Nichols method, representing the conventional method, and the GA and

PSO methods, representing the AI method. The three methods produce a graph and several important

data points related to the methods above. The developed Python code allows users to change the system's

transfer function value, and generate PID parameter values, namely overshot, ITAE error, rise time,

settling time, and the required execution time. Below is Python code for the simulation.

===
compare_pid_methods.py
import numpy as np
import matplotlib.pyplot as plt
from control import tf, feedback, step_response, margin
import random, csv, time

T_FINAL = 20 # simulation duration for step response
T_STEPS = 500 # number of time
T = np.linspace(0, T_FINAL, T_STEPS)

=== Plant ===
def get_plant():
 num = [1]
 den = [1, 6, 5]
 return tf(num, den)

=== Objecctive Function: ITAE ===
def pid_itae(params, plant):
 Kp, Ki, Kd = params
 if Kp < 0 or Ki < 0 or Kd < 0:
 print(f"Invalid PID: {params}")
 return 1e6
 try:
 C = tf([Kd, Kp, Ki], [1, 0])
 closed_loop = feedback(C * plant, 1)
 t, y = step_response(closed_loop, T)
 if np.any(np.isnan(y)) or np.any(np.isinf(y)):
 print(f"Invalid response: {params}")
 return 1e6
 e = 1 - y
 # itae = simpson(t * np.abs(e), t)
 # itae = simps(t * np.abs(e), t)
 itae = np.trapz(t * np.abs(e), t)
 return itae
 except Exception as e:
 print(f"Error for PID {params}: {e}")
 return 1e6

=== Syatem Respon Analisys ===
def analyze_response(pid, plant):

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&
http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&

Volume 12, Issue 2, October 2025, pp. 234-244

ISSN 2355-5068 ; e-ISSN 2622-4852

DOI: 10.33019/jurnalecotipe.v12i2.4574

239

A Comparative Study of Traditional PID Tuning Techniques and AI-Based Algorithmic…(Purwadi Joko Widodo et al)

 Kp, Ki, Kd = pid
 C = tf([Kd, Kp, Ki], [1, 0])
 TF = feedback(C * plant, 1)
 t, y = step_response(TF, T)
 overshoot = (np.max(y) - 1.0) * 100
 ess = np.abs(1.0 - y[-1])
 rise_time = t[np.where(y >= 0.9)[0][0]] if any(y >= 0.9) else None
 settling_idx = np.where(np.abs(y - 1.0) > 0.05)[0]
 settling_time = t[settling_idx[-1]] if len(settling_idx) > 0 else t[-1]
 return overshoot, ess, rise_time, settling_time

=== GA ===
def ga_pid(plant, pop_size=20, gen_max=30, mutation_rate=0.1, bounds=((0, 5), (0, 5), (0, 2))):
 def random_individual():
 return [random.uniform(*bounds[i]) for i in range(3)]

 def crossover(p1, p2):
 alpha = random.random()
 return [(1 - alpha) * p1[i] + alpha * p2[i] for i in range(3)]

 def mutate(ind):
 i = random.randint(0, 2)
 ind[i] += random.uniform(-1, 1)
 ind[i] = max(bounds[i][0], min(bounds[i][1], ind[i]))
 return ind

 population = [random_individual() for _ in range(pop_size)]
 for _ in range(gen_max):
 scores = [pid_itae(ind, plant) for ind in population]
 ranked = sorted(zip(scores, population), key=lambda x: x[0])
 population = [x[1] for x in ranked[:pop_size//2]]

 children = []
 while len(children) < pop_size - len(population):
 p1, p2 = random.sample(population, 2)
 child = crossover(p1, p2)
 if random.random() < mutation_rate:
 child = mutate(child)
 children.append(child)

 population += children
 return ranked[0][1]

=== PSO ===
def pso_pid(plant, num_particles=15, max_iter=30, bounds=((0, 5), (0, 5), (0, 2))):
 w = 0.5
 c1 = 1.5
 c2 = 1.5
 dim = 3
 particles = np.random.uniform([b[0] for b in bounds], [b[1] for b in bounds], (num_particles, dim))
 velocities = np.zeros_like(particles)
 personal_best = particles.copy()
 personal_best_scores = np.array([pid_itae(p, plant) for p in particles])
 global_best = personal_best[np.argmin(personal_best_scores)]

 for _ in range(max_iter):
 for i in range(num_particles):
 r1, r2 = np.random.rand(dim), np.random.rand(dim)
 velocities[i] = (
 w * velocities[i]
 + c1 * r1 * (personal_best[i] - particles[i])
 + c2 * r2 * (global_best - particles[i])
)
 particles[i] += velocities[i]
 particles[i] = np.clip(particles[i], [b[0] for b in bounds], [b[1] for b in bounds])

 score = pid_itae(particles[i], plant)
 if score < personal_best_scores[i]:
 personal_best[i] = particles[i].copy()
 personal_best_scores[i] = score

 global_best = personal_best[np.argmin(personal_best_scores)]

 return global_best.tolist()

=== Ziegler-Nichols Tuning ===
def zn_pid(plant):
 K = 1.0
 C = tf([K], [1])
 loop = C * plant
 gm, pm, wg, wp = margin(loop)
 if gm == float("inf") or wp == 0 or np.isnan(gm) or np.isnan(wp):
 print("ZN: margin gagal dihitung, fallback ke PID default")
 return [1.0, 1.0, 0.0] # fallback

 Ku = gm
 Pu = 2 * np.pi / wp
 Kp = 0.6 * Ku
 Ki = 1.2 * Ku / Pu
 Kd = 0.075 * Ku * Pu
 return [Kp, Ki, Kd]

=== Plot Comparation ===
def plot_comparison(pids, labels, plant):
 plt.figure()
 for pid, label in zip(pids, labels):

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&
http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&

Volume 12, Issue 2, October 2025, pp. 234-244

ISSN 2355-5068 ; e-ISSN 2622-4852

DOI: 10.33019/jurnalecotipe.v12i2.4574

240

A Comparative Study of Traditional PID Tuning Techniques and AI-Based Algorithmic… (Purwadi Joko Widodo, et al)

 Kp, Ki, Kd = pid
 C = tf([Kd, Kp, Ki], [1, 0])
 TF = feedback(C * plant, 1)
 t, y = step_response(TF, T)
 plt.plot(t, y, label=label)
 plt.title("Step Response Comparison")
 plt.xlabel("Time (s)")
 plt.ylabel("Output")
 plt.grid(True)
 plt.legend()
 plt.show()

=== Save Result as CSV ===
def save_results_to_csv(filename, methods, pids, times, plant):
 with open(filename, mode='w', newline='') as file:
 writer = csv.writer(file)
 writer.writerow(["Method", "Kp", "Ki", "Kd", "ITAE", "Overshoot", "Steady State Error", "Rise Time", \
 "Settling Time", "Execution Time (s)"])
 for method, pid, elapsed in zip(methods, pids, times):
 itae = pid_itae(pid, plant)
 os, ess, tr, ts = analyze_response(pid, plant)
 writer.writerow([method] + pid + [itae, os, ess, tr, ts, elapsed])

=== Main ===
if __name__ == "__main__":
 plant = get_plant()

 t0 = time.time()
 pid_zn = zn_pid(plant)
 t_zn = time.time() - t0

 t0 = time.time()
 pid_ga = ga_pid(plant)
 t_ga = time.time() - t0

 t0 = time.time()
 pid_pso = pso_pid(plant)
 t_pso = time.time() - t0

 methods = ["Ziegler-Nichols", "Genetic Algorithm", "Particle Swarm"]
 pids = [pid_zn, pid_ga, pid_pso]
 times = [t_zn, t_ga, t_pso]

 print("\nZiegler-Nichols PID:", pid_zn, f"(Waktu: {t_zn:.2f}s)")
 print("GA PID:", pid_ga, f"(Waktu: {t_ga:.2f}s)")
 print("PSO PID:", pid_pso, f"(Waktu: {t_pso:.2f}s)")

 for method, pid, elapsed in zip(methods, pids, times):
 os, ess, tr, ts = analyze_response(pid, plant)
 print(f"{method}: Overshoot = {os:.2f}%, ess = {ess:.4f}, Rise Time = {tr:.2f}s, Settling Time = {ts:.2f}s, \
 Time = {elapsed:.2f}s")

 plot_comparison(pids, methods, plant)
 save_results_to_csv("pid_comparison_results.csv", methods, pids, times, plant)
 print("\nResult was saved at 'pid_comparison_results.csv'")

===

By taking a simple transfer function as shown in Figure 2 and the system transfer function as shown

in equation (1), a simulation was then carried out with the Python Program Code that was created and

the results were compared. A simple example is used in the simulation to simplify the simulation and

comparisons performed.

Figure 2. System block diagram used in simulations

𝐹𝐴 =
1

𝑠2+6𝑠+5
 (1)

Figures 3 and 4 show the simulation results of the three methods being compared to observe the

system's response to the step function test signal. Figure 3 is the first simulation, and Figure 4 is the

second simulation to verify the result of the first simulation.

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&
http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&

Volume 12, Issue 2, October 2025, pp. 234-244

ISSN 2355-5068 ; e-ISSN 2622-4852

DOI: 10.33019/jurnalecotipe.v12i2.4574

241

A Comparative Study of Traditional PID Tuning Techniques and AI-Based Algorithmic…(Purwadi Joko Widodo et al)

Figure 3. Simulation result 1

Ziegler-Nichols PID: [1.0, 1.0, 0.0] (Execution Time: 0.00s)
GA PID: [4.024979381891309, 4.887865592973621, 0.017178639320462367] (Execution Time: 3.97s)
PSO PID: [5.0, 5.0, 0.0] (Execution Time : 2.99s)
Ziegler-Nichols: Overshoot = -1.61%, ess = 0.0161, Rise Time = 11.26s, Settling Time = 14.55s, Time = 0.00s
Genetic Algorithm: Overshoot = 1.18%, ess = 0.0000, Rise Time = 2.08s, Settling Time = 2.40s, Time = 3.97s
Particle Swarm: Overshoot = -0.00%, ess = 0.0000, Rise Time = 2.04s, Settling Time = 2.48s, Time = 2.99s

Table 2. Numerical datas of PID parameters generated from the 1st simulation

Method Kp Ki Kd ITAE Overshoot
Steady State

Error
Rise Time

Settling

Time

Execution

Time (s)

Ziegler-Nichols 1.00000 1.00000 0.00000 22.08894 -1.60876 0.01609 11.26253 14.54910 0.00151

Genetic Algorithm 4.02498 4.88787 0.01718 0.92264 1.18237 0.00000 2.08417 2.40481 3.96686

Particle Swarm 5.00000 5.00000 0.00000 0.79987 0.00000 0.00000 2.04409 2.48497 2.99478

Figure 4. Simulation Result 2

Ziegler-Nichols PID: [1.0, 1.0, 0.0] (Execution Time: 0.00s)
GA PID: [4.587986891341883, 4.718672144798576, 0.33918189648143965] (Execution Time: 9.29s)
PSO PID: [5.0, 5.0, 0.0] (Execution Time: 6.80s)
Ziegler-Nichols: Overshoot = -1.61%, ess = 0.0161, Rise Time = 11.26s, Settling Time = 14.55s, Time = 0.00s
Genetic Algorithm: Overshoot = 0.20%, ess = 0.0000, Rise Time = 2.28s, Settling Time = 2.73s, Time = 9.29s
Particle Swarm: Overshoot = -0.00%, ess = 0.0000, Rise Time = 2.04s, Settling Time = 2.48s, Time = 6.80s

Table 3. Numerical datas of PID parameters generated from the 2nd simulation

Method Kp Ki Kd ITAE Overshoot
Steady State

Error
Rise Time

Settling

Time

Execution

Time (s)

Ziegler-Nichols 1.00000 1.00000 0.00000 22.08894 -1.60876 0.01609 11.26253 14.54910 0.00311

Genetic Algorithm 4.58799 4.71867 0.33918 0.94581 0.20224 0.00000 2.28457 2.72545 9.29095

Particle Swarm 5.00000 5.00000 0.00000 0.79987 0.00000 0.00000 2.04409 2.48497 6.80492

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&
http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&

Volume 12, Issue 2, October 2025, pp. 234-244

ISSN 2355-5068 ; e-ISSN 2622-4852

DOI: 10.33019/jurnalecotipe.v12i2.4574

242

A Comparative Study of Traditional PID Tuning Techniques and AI-Based Algorithmic… (Purwadi Joko Widodo, et al)

The evaluation was conducted by analyzing system performance against step input signals and

measuring several performance parameters, such as Integral Time-weighted Absolute Error (ITAE),

overshoot, rise time, settling time, and steady-state error (SSE). The results of two tests showed a

consistent performance pattern.

The Ziegler–Nichols method demonstrated a very stable system response with a very small

overshoot value (~1.61%). However, the response speed was relatively slow, with a rise time of 11.26

seconds and a settling time that was not reached within the 20-second simulation duration, in this case

~14.55 seconds. The high ITAE value (22.08894) also indicates that the system's accumulated error is

still large. This is consistent with the characteristics of the Ziegler–Nichols method, which was initially

developed for heuristic initial PID tuning of continuous-time linear systems without regard for optimal

performance [2].

In contrast, Genetic Algorithm method demonstrated significantly more responsive performance.

With a rise time of less than 3 seconds and a settling time of approximately under 3 seconds, this method

was able to quickly adjust the system to achieve stability. Although its overshoot was higher than PSO

(approximately 1.18%–0.20%), GA remained superior in terms of speed and effectiveness in reducing

error, as widely reported in the control optimization literature [14]. The lower ITAE value (~0.92–0.94)

compared to ZN indicates that the GA tuning results were more efficient in reducing the total error over

time.

The Particle Swarm Optimization method demonstrated the most balanced performance of the

three. With a smaller overshoot (approximately ~0%) and rise and settling times nearly equivalent to

GA, PSO provided excellent results in the context of a tradeoff between stability and speed. PSO is

known to excel in exploring and exploiting global solution spaces without requiring many explicit

parameters, as demonstrated in the literature15,16]. The similar ITAE values to GA (~0.79) indicate that

PSO is also capable of effectively minimizing errors.

In terms of steady-state error, both GA and PSO yielded the same final value (~0.0000),

significantly lower than the ZN method. This indicates that both AI-based methods can provide more

accurate and precise PID tuning, consistent with previous studies on artificial intelligence in system

control[17].

Overall, intelligent optimization approaches such as GA and PSO have been shown to provide

significantly superior PID tuning results compared to classical methods. GA is more suitable for systems

requiring very fast response, albeit with slightly larger overshoot. Meanwhile, PSO is well-suited for

systems requiring a compromise between stability and speed. On the other hand, the Ziegler–Nichols

method still has practical value as an initial approach or rough reference for PID tuning, although its

results are less than optimal in the context of modern dynamic performance.

The test results show that the Ziegler–Nichols (ZN) method provides the lowest performance, with

high ITAE, significant overshoot, and long rise and settling times, despite its very short execution time.

In contrast, artificial intelligence-based optimization methods, namely Genetic Algorithm (GA) and

Particle Swarm Optimization (PSO), consistently produce much better performance. Both methods are

able to reduce ITAE by more than 95%, eliminate steady-state error, and accelerate rise and settling

times by more than 80% compared to ZN. PSO shows more stable performance with zero overshoot and

relatively consistent results, while GA tends to vary but still produces significant improvements.

The application of GA and PSO in control systems provides practical advantages, they are more

efficient, accurate, and adaptive PID tuning compared to classical methods such as Ziegler–Nichols.

Both of them are capable for optimation performance in complex systems that are nonlinear or have

variable parameters, for example in industrial temperature control, electric motors, and renewable

energy systems. PSO is faster in convergence, while GA is more flexible in finding optimal solutions,

so both can be selected according to needs. Although they require higher computational costs, modern

hardware developments allow offline and online implementations, and Python with its various libraries

provides an alternative for researcher and engineers to do so.

4. CONCLUSION

Based on the simulation results, it can be concluded that tune PID parameters, can be improve use

artificial intelligence algorithms, intelligent optimization-based tuning methods such as the Genetic

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&
http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&

Volume 12, Issue 2, October 2025, pp. 234-244

ISSN 2355-5068 ; e-ISSN 2622-4852

DOI: 10.33019/jurnalecotipe.v12i2.4574

243

A Comparative Study of Traditional PID Tuning Techniques and AI-Based Algorithmic…(Purwadi Joko Widodo et al)

Algorithm (GA) and Particle Swarm Optimization (PSO) significantly improve performance compared

to the classical Ziegler-Nichols (ZN) method.

The Ziegler–Nichols method demonstrates good system stability with very small overshoot

values(~1.61%). ZN system response tends to be slow and less efficient in reducing the total error over

time, as reflected by the high ITAE value more than 22. This makes the ZN method more suitable as an

initial tuning approach or for systems that do not allow any overshoot at all. On the other hand, the

Genetic Algorithm method demonstrates very fast system response, both in terms of rise time (~2s) and

settling time(~2s), and very small steady-state error(~0). However, this method produces relatively

higher overshoot(~0.2) than PSO value (~0). The Particle Swarm Optimization method provides the

most balanced performance, with lower overshoot than GA while maintaining excellent response speed

and error efficiency. ITAE values produce by PSO (~0.7)are nearly equivalent to those of GA(~0.9),

demonstrating its high effectiveness in PID tuning.

Considering all evaluation parameters, the PSO method can be considered an optimal approach for

systems that require a balance between speed and stability. GA, on the other hand, excels in applications

that prioritize response speed. So, the Ziegler–Nichols method remains relevant as a baseline or initial

reference, although it is not as efficient as the two intelligent methods in complex dynamic control. Last

but not least Python with its libraries, is quite reliable for solving control problems both conventionally

and by applying AI algorithms. In the future, further exploration can be carried out on the use of Python

as a freeware for various experiments, especially in the field of control engineering.

Acknowledgments

LPPMP UNS through the Hibah Penguatan Kapasitas Group Riset (PKGR UNS) with Research

Assignment Agreement Number 371/UN27.22/PT.01.03/2025.

REFERENCES

[1] K. Ogata, “Modern Control Engineering. in Instrumentation and Controls Series”. Prentice Hall,

2010. [Online]. Available: https://books.google.co.id/books?id=Wu5GpNAelzkC

[2] J. G. Ziegler and N. B. Nichols, “Optimum Settings for Automatic Controllers,” Journal of Fluids

Engineering, vol. 64, no. 8, pp. 759–765, Nov. 1942, doi: 10.1115/1.4019264.

[3] G. van Rossum, “Python Programming Language,” in USENIX Annual Technical Conference,

2007. [Online]. Available: https://api.semanticscholar.org/CorpusID:45594778

[4] C. R. Harris et al., “Array programming with NumPy” Nature, vol. 585, no. 7825, pp. 357–362,

Sept. 2020, doi: 10.1038/s41586-020-2649-2.

[5] J. D. Hunter, “Matplotlib: A 2D Graphics Environment,” Computing in Science & Engineering,

vol. 9, no. 3, pp. 90–95, 2007, doi: 10.1109/MCSE.2007.55.

[6] D. H. Kim, “Advanced Lecture for PID Controller of Nonlinear System in Python,” IJRTE, vol.

9, no. 6, pp. 20–29, Mar. 2021, doi: 10.35940/ijrte.F5375.039621.

[7] S. Fuller, B. Greiner, J. Moore, R. Murray, R. Van Paassen, and R. Yorke, “The Python Control

Systems Library (python-control),” in 2021 60th IEEE Conference on Decision and Control

(CDC), Austin, TX, USA: IEEE, Dec. 2021, pp. 4875–4881. doi:

10.1109/CDC45484.2021.9683368.

[8] P. Saraf, M. Gupta, and A. M. Parimi, “A Comparative Study Between a Classical and Optimal

Controller for a Quadrotor,” Sept. 28, 2020, arXiv: arXiv:2009.13175. doi:

10.48550/arXiv.2009.13175.

[9] B. Smith, “Building a Simulated PID Controller in Python,” Medium. Accessed: July 31, 2025.

[Online]. Available: https://medium.com/@bsmith4360/building-a-simulated-pid-controller-in-

python-111b08ccae1a

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&
http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=5992

Volume 12, Issue 2, October 2025, pp. 234-244

ISSN 2355-5068 ; e-ISSN 2622-4852

DOI: 10.33019/jurnalecotipe.v12i2.4574

244

A Comparative Study of Traditional PID Tuning Techniques and AI-Based Algorithmic… (Purwadi Joko Widodo, et al)

[10] D. H. Kim and H. Alemayehu, “A study on Teaching Method of Control Engineering by Using

Python Based PID,” International Advanced Research Journal in Science, Engineering and

Technology, vol. 7, no. 9, pp. 1–9, Sept. 2020, doi: 10.17148/IARJSET.2020.7901. R. V.

Petrosian, I. A. Pilkevych, and A. R. Petrosian, “Algorithm for optimizing a PID controller model

based on a digital filter using a genetic algorithm,” in doors, 2023. [Online]. Available:

https://api.semanticscholar.org/CorpusID:259115656

[11] A. A. Salem, M. A. Moustafa, and M. E. Ammar, “Tuning PID Controllers Using Artificial

Intelligence Techniques.,” 2014. [Online]. Available:

https://api.semanticscholar.org/CorpusID:199020399

[12] A. Taeib, A. Ltaeif, and A. Chaari, “A PSO Approach for Optimum Design of Multivariable PID

Controller for nonlinear systems,” June 26, 2013, arXiv: arXiv:1306.6194. doi:

10.48550/arXiv.1306.6194.

[13] D. Goldberg, “Genetic Algorithm in Search, Optimization, and Machine Learning,” Addison-

Wesley, Reading, Massachusetts, vol. xiii, Jan. 1989.

[14] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of ICNN’95 -

International Conference on Neural Networks, Nov. 1995, pp. 1942–1948 vol.4. doi:

10.1109/ICNN.1995.488968.

[15] D. Oliva, A. Ramos Michel, M. Navarro, E. H. Haro, and A. Casas, “Particle Swarm

Optimization,” 2023, pp. 49–71. doi: 10.5281/zenodo.7537827.

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&
http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&

